首页 > 技术 > 内容

采用可编辑逻辑器件和VHDL语言实现波控系统设计的设计

时间:2025-11-30  作者:Diven  阅读:0

1 引 言

相控阵是通过波控系统控制阵列天线各单元通道的相位、幅度以形成空间波束并控制其方位角和俯仰角。早期的波控系统一般采用硬件电路来实现,这种实现方法的缺点是设备量大,不灵活,很难实现波束的复杂计算,不易满足特殊要求。后来采用单片机DSP芯片来设计波控系统,单片机通常不计算波控码,仅仅是根据接收到的波控码布相,而DSP可以自己计算波控码,但是单片机、DSP都是象流水线一样串行的运行指令,也就是说,不能并行地对各天线单元通道进行波控码计算和布相。

针对波控系统要求高速计算、多通道并行逻辑控制的特点,选取FPGA作为波控系统的核心处理器。目前采用大规模FPGA器件来实现波控系统的设计还很少,采用FPGA能够大大简化波控系统硬件设计,把以前的硬件逻辑控制电路全部集成在FPGA芯片内部,从而实现对波控羁的高速并行计算和对各单元通道的并行同步控制,本文针对这种基于FPGA波控系统设计方案的可行性进行了探讨。

2 波控系统设计要求

2.1 接口设计

某电子系统组成如图1所示。系统主控计算机和波控系统之间信息交换量很大,要求收发速度都要很快;同时天线阵元很多,接口必须有可扩展性,实际中采用了以太网(Ethernet)技术。

以太网协议是指根据IEEE 802.3规范制定的局域网协议(Local Area Network,LAN)中的CSMA/CD协议。一方面,以太网与传统的RS 485、CAN总线等相比,以太网更加高速、通用,经过适当剪裁和优化的TCP/IP协议栈,也完全可以适应工业用途的需要。另一方面,相对于新兴的USB 2.0,IEEE1394等总线,以太网技术在传输距离、布线成本以及控制软件的通用性上都有明显的优势。

波控系统需要实时控制T/R组件以及进行状态检测,采用同步串行传输方式,时钟20 MHz,完成一次T/R组件重新布相以及状态检测需要1μs。

2.2 模块化设计

系统天线阵列有几百个阵元,并且要求可扩展性,用一个FPGA波控板不可能实现这样复杂的控制和运算,每一个阵元在天线阵的位置是不一样的,但是对T/R组件、移相器的控制以及接口都是相同的。每个FPGA波控板控制一个天线子阵,而一个天线子阵由25个天线单元组成,所以考虑采用模块化设计方法。系统上电工作,主控计算机立即将每个FPGA波控板的位置信息下发。波控板也根据自己所接受到的位置信息计算每个天线阵元的移相值。这样的设计就实现了波控板的互换性,每一个波控板的软件和硬件都是完全相同的,任何一块出了问题都可以立即更换,而不需要考虑位置,方便维修工作。

3 波控系统设计

3.1 波控码计算公式

相控阵天线上第(i,j)单元通道相对于参考单元第(0,0)单元通道的相位差φ(i,j):

式中:d1为相邻天线单元在阵面水平方向的间距,d2为相邻天线单元在阵面垂直方向的间距;(φ,θ)为天线波束指向,其中φ为方位角,天线波束与天线阵面水平方向的夹角,θ为俯仰角,天线波束与相控阵阵面的夹角;δij为第(i,j)单元通道与参考单元之间的初始相位误差。

3.2 FPGA实现

FPGA作为波控系统的核心处理器,按照功能划分为:波控码计算模块、以太网控制器模块、相控阵单元控制模块、温度控制模块、开关量控制模块、系统状态控制模块。FPGA内部各功能模块划分如图2所示。这些模块都是并行工作,比如相控阵天线单元控制模块可以对各单元同步实时控制,完全保证各单元通道相位同步切换。

波控码计算模块将得到的波束指向信息(方位角、俯仰角)和频率快速的计算出相控阵各单元通道的相位值。为了获得相控阵天线的低副瓣性能,必须严格控制天线各单元通道内的幅度和相位误差。T/R组件、天线单元在加工安装过程中各单元通道并不能够保证相位完全一致,存在相位误差。因而,在测量各天线单元与参考天线单元之间的幅度和相位误差的基础上,波控码计算模块通过改变波控码,对各单元通道之间的相位误差加以修正。

以太网控制器模块主要实现以太网接口设计,使波控系统能够和主控计算机高速可靠的进行信息交流,主控计算机下发频率、方位、俯仰信息,波控系统上传实际波束方位俯仰角、T/R组件状态、工作频率、温度等信息。

相控阵单元控制模块的任务就是并行同步控制各单元通道,先将移相值和收发开关控制值组合成波控码,然后通过自定义的I/O口将波控码发送到相应的T/R组件,实现对T/R组件的控制,完成布相,得到需要的波束指向。

FPGA各功能模块软件设计均采用VHDL语言,VHDL语言用硬件数字逻辑电路来实现软件算法,特点是实现整数的加减法、乘法非常便捷,但是实现除法(被除数不是2的整数次幂)和对小数的算法比较困难。按照上面公式计算波控码,VHDL语言直接实现这样的计算是很困难的,不能够直接实现三角函数运算和浮点运算。解决方法就是,在FPGA的配置芯片中存储一个4 096×16 b的正弦表,通过查表法间接实现三角运算,浮点运算则采用定点运算来替代。用仿真软件ModelSim XE对方位俯仰电扫描计算结果进行仿真,波控码计算结果如图3所示。

3.3 波控系统设计验证

在波控码实时计算软件设计中,所有的加减乘除都采用定点运算,而且三角函数计算也是采用查表法实现,所以和浮点计算相比波控码计算结果误差加大,精度降低。选取离参考单元较远的第(4,4)单元通道,将浮点运算和定点运算得到的波控码值进行比较,波控码误差δcode:

用Matlab模拟FPGA定点运算和三角查表运算进行仿真,在仿真图中可以清楚地看到波控码误差绝对值小于0.02,定点计算结果和真值误差很小。

同时通过系统实际运行来验证方案的可行性,将波控系统与系统联试,FPGA在每次重新布相后将各个移相器的波控码上发给主控计算机,将这些波控码与主控计算机浮点运算结果相对比,发现实际情况与仿真结果相吻合,实际运算与仿真运算一致,符合精度要求和实时性要求。

4 结语

本文阐述了基于FPGA实现相控阵波控系统的设计方案,并且通过软件仿真和实际运行验证这种方案设计的可行性。这种方案设计充分有着了FPGA芯片的高速、并行特点,可以同步并行控制天线各单元通道,保证了相控阵天线波束切换的高速性和各单元的一致性。

猜您喜欢


电位器作为重要的调节元件,应用于音响设备、仪器仪表、自动控制等领域。奥斯特(OST)作为知名的电位器品牌,优良的品质和丰富的产品线受到众多工程师和企业的青睐。面...
2018-07-23 16:34:55
热敏NTC(负温度系数)电阻是一种温度升高而阻值降低的电子元件,应用于温度测量、温度补偿、过温保护等领域。了解热敏NTC电阻的阻值与温度之间的关系,对于设计温度...
2025-03-17 00:31:10
电阻作为基础元件,其质量直接影响到电子设备的性能和稳定性。合金电阻因其优异的温度系数、稳定性和耐久性,被应用于高精密电子仪器中。丽景电子作为国内知名的电子元器件...
2012-11-13 05:18:30
精密电阻作为电子元器件中的重要组成部分,其性能和稳定性直接影响电路的整体表现。冠佐(SUSCON)作为国内知名的精密电阻品牌,凭借高品质的产品和严格的工艺标准,...
2013-10-06 10:54:44
超声波传感器探头从哪里接收超声波传感器探头接收超声波信号的位置通常位于传感器的前端或顶部。当传感器发射出超声波脉冲后,它会沿着预定的路径传播并与目标物体相互作...
2024-01-31 09:56:00
温度保险丝作为重要的安全保护元件,起到了防止电路过热和火灾的关键作用。LGL作为行业内知名的温度保险丝品牌,其产品因性能稳定、质量可靠而受到青睐。本文将围绕“L...
2022-11-05 18:00:30
防浪涌电阻作为保护电路的重要元件,其性能和规格越来越受到关注。PHYCOM(飞元)作为国内知名的电子元器件制造商,其防浪涌电阻产品凭借高品质和多样化的规格,应用...
2014-11-05 17:20:30
「1206贴片电阻」,这个名字听起来可能有些陌生,但它却是电子产品中不可或缺的元件。简单来说,它就像电路中的一个「小闸门」,可以控制电流的大小。 「1206」指...
2025-04-14 15:03:34
FFC/FPC连接器因其灵活性和高密度的特点,应用于多个领域。在消费电子产品中,如手机、平板电脑和笔记本电脑,FFC/FPC连接器常用于连接显示屏、主板和其组件...
2009-08-14 00:00:00