一个简单的RTL同步FIFO设计

时间:2025-05-02  作者:Diven  阅读:0

FIFO 是FPGA设计中最有用的模块。FIFO 在模块之间提供简单的握手和同步机制,是设计人员将数据从一个模块传输到另一个模块的常用选择。

一个简单的RTL同步FIFO设计

在这篇文章中,展示了一个简单的 RTL 同步 FIFO,可以直接在自己的设计中配置和使用,该设计是完全可综合的。

为什么要自己设计FIFO

那么,为什么呢?网上有很多关于 FIFO 的 Verilog/VHDL 代码的资源,过去,我自己也使用过其中的一些。但令人沮丧的是,中的大多数都存在问题,尤其是在上溢出和下溢出条件下。所以想一劳永逸地解决这些问题。

FIFO 规格性能

同步,单时钟。

基于寄存器的 FIFO,适用于中小型 FIFO。

Full、Empty、Almost-full、Almost-empty 标志。

完全可配置的数据宽度、深度和标志。

完全可综合的系统 Verilog 代码。

 

Module my_fifo #(                   parameter DATA_W           = 4      ,        // Data width                   parameter DEPTH            = 8      ,        // Depth of FIFO                                      parameter UPP_TH           = 4      ,        // Upper threshold to generate Almost-full                   parameter LOW_TH           = 2               // Lower threshold to generate Almost-empty                )                (                   input                   clk         ,        // Clock                   input                   rstn        ,        // Active-low Synchronous Reset                                      input                   i_wren      ,        // Write Enable                   input  [DATA_W - 1 : 0] i_wrdata    ,        // Write-data                   output                  o_alm_full  ,        // Almost-full signal                   output                  o_full      ,        // Full signal                   input                   i_rden      ,        // Read Enable                   output [DATA_W - 1 : 0] o_rddata    ,        // Read-data                   output                  o_alm_empty ,        // Almost-empty signal                   output                  o_empty              // Empty signal                );logIC [DATA_W - 1        : 0] data_rg [DEPTH] ;        // Data arraylogIC [$clog2(DEPTH) - 1 : 0] wrptr_rg        ;        // Write pointerlogic [$clog2(DEPTH) - 1 : 0] rdptr_rg        ;        // Read pointerlogic [$clog2(DEPTH)     : 0] dcount_rg       ;        // Data counter      logic                         wren_s          ;        // Write Enable signal generated iff FIFO is not fulllogic                         rden_s          ;        // Read Enable signal generated iff FIFO is not emptylogic                         full_s          ;        // Full signallogic                         empty_s         ;        // Empty signalalways @ (posedge clk) begin   if (!rstn) begin                     data_rg   <= '{default: '0} ;      wrptr_rg  <= 0              ;      rdptr_rg  <= 0              ;            dcount_rg <= 0              ;   end   else begin      ready_rg <= 1'b1 ;                              if (wren_s) begin                                            data_rg [wrptr_rg] <= i_wrdata ;        // Data written to FIFO         if (wrptr_rg == DEPTH - 1) begin            wrptr_rg <= 0               ;        // Reset write pointer           end         else begin            wrptr_rg <= wrptr_rg + 1    ;        // Increment write pointer                     end      end            if (rden_s) begin                  if (rdptr_rg == DEPTH - 1) begin            rdptr_rg <= 0               ;        // Reset read pointer         end         else begin            rdptr_rg <= rdptr_rg + 1    ;        // Increment read pointer                     end      end            if (wren_s && !rden_s) begin               // Write operation         dcount_rg <= dcount_rg + 1 ;      end                          else if (!wren_s && rden_s) begin          // Read operation         dcount_rg <= dcount_rg - 1 ;               end   endend// Full and Empty internalassign full_s      = (dcount_rg == DEPTH) ? 1'b1 : 0 ;assign empty_s     = (dcount_rg == 0    ) ? 1'b1 : 0 ;// Write and Read Enables internalassign wren_s      = i_wren & !full_s                ;  assign rden_s      = i_rden & !empty_s               ;// Full and Empty to outputassign o_full      = full_s                          ;assign o_empty     = empty_s                         ;// Almost-full and Almost Empty to outputassign o_alm_full  = (dcount_rg > UPP_TH) ? 1'b1 : 0 ;assign o_alm_empty = (dcount_rg < LOW_TH) ? 1'b1 : 0 ;// Read-data to outputassign o_rddata    = data_rg [rdptr_rg]              ;   endModule

 

基于 RAM 的 FIFO

在上面的步骤中,我们看到了一个基于寄存器的同步FIFO。接下来,我们来看看基于 RAM 的 FIFO。该 FIFO 在 RAM 而不是寄存器上实现其数据阵列。这适用于在硬件上实现大型 FIFO ;特别是在 FPGA 上,FPGA 里有大量的Block RAM 可用。这将降低资源利用率,也可以获得更好的时序性能。


审核编辑:刘清

猜您喜欢


SATASATA 于 2000 年发布,与早期的 PATA 接口相比具有多种优势,例如减小了电缆尺寸和成本(40 或 80 根减小到 7 根导线)、本机热插拔...
2023-09-11 09:02:00

熔断器作为电路保护的重要元件,其品牌和类型的选择显得尤为关键。AEM作为知名的电气元件品牌,其熔断器产品因品质优良、性能稳定而受到市场青睐。本文将围绕“AEM熔...
2022-03-16 14:06:30


外六角喉塞是常见的机械配件,应用于管道连接和密封领域。外形呈六角形,便于使用扳手等工具进行安装和拆卸。喉塞内部通常有一个圆形的孔,用于连接管道或其设备,确保流体...
2008-02-22 00:00:00

电源线、刹车线和延长线在我们的日常生活中是重要配件。电源线是连接电源和设备的桥梁,确保电能顺畅传输,支持各种电子设备的正常运行。无论是家庭电器还是办公设备,高品...
2010-04-28 00:00:00

消防电源监控系统,作为建筑消防安全的重要组成部分,犹如建筑的神经中枢,时刻监控着消防设备的电力供应,确保火灾发生时,消防系统能够及时响应,发挥关键作用。为了保障...
2024-02-19 00:00:00

0603贴片电阻是电子电路设计中常用的元器件,其体积小巧,性能稳定。1%精度则保证了电路的精确性和可靠性。为了方便工程师和电子爱好者快速查找所需的阻值,我们提供...
2024-11-26 11:29:42

防雷专用电阻是用于保护电气设备免受雷击和过电压影响的重要元件。通过限制电流的流动,降低电压峰值,从而有效地保护设备不受损坏。这种电阻通常具有较高的耐压和耐功率特...
2013-08-25 00:00:00

双电层电容器(EDLC/超级电容器)是使用了金属箔层压薄膜封装的电容器。其低电阻的特性可有效用于峰值输出的辅助电源、失电时的备份、能量收集/再生能源用的蓄电。另...
2023-08-22 14:13:00