首页 > 技术 > 内容

FPGA设计-时序约束(理论篇)

时间:2025-12-01  作者:Diven  阅读:0

STA:StatIC Timing Analysis

STA(StatIC Timing Analysis,即静态时序分析)在实际FPGA设计过程中的重要性是不言而喻的,其作用是:

1. 帮助分析和验证一个FPGA设计的时序是否符合要求;

2. 指导fitter(布线综合器)布局布线出符合要求的结果;

简单地说,静态时序分析(STA)告诉我们电路的实际表现如何,而提供约束(SDC文件,即上面的要求)来告诉分析工具我们希望电路的表现应该是怎样。Quartus II自带的STA工具TimeQuest TA在整个FPGA设计过程中的使用流程如下图所示:

图 1 TimeQuest TA使用流程

简而言之,我们需要学会:

A. 正确理解时序,看背景知识介绍

B. 正确编写SDC文件,以及利用TimeQuest TA生成SDC约束命令,SDC介绍

C. 利用TimeQuest TA来查看和验证时序

一、 背景知识介绍:

1.1 启动沿(launch)和锁存沿(latch):

图 2 启动沿和锁存沿

启动沿:数据被launch的时钟边沿;也就是说,每一个启动沿,一般都会产生一个新的数据!

锁存沿:数据被latch的时钟边沿;也就是说,每一个锁存沿,都会有一个新的数据被保存!

对于如上图所示的级联的寄存器电路而言(忽略上一级触发器输出到下一级触发器输入之间的逻辑关系),一般蓝色的上升沿作为第一个触发器的启动沿,而红色的上升沿(一般都是紧跟着启动沿后的有效边沿)。所以说:蓝色的启动沿之后由REG1输出有效数据,并在红色的边沿被锁存进REG2并输出到下级。

1.2 建立(setup)和保持(hold)时间

图 3 建立和保持时间

上述的锁存沿会将数据保存下来,但是必须要满足一定的条件:

建立时间Tsu:在时钟有效沿之前,数据必须保持稳定的最小时间;

保持时间Th:在时钟有效沿之后,数据必须保持稳定的最小时间;

这就相当于一个窗口时间,在有效边沿的窗口时间内,数据必须保持稳定;这里的时钟信号时序和数据信号时序,都是寄存器实际感受到的时序;什么事实际感受到的,下面会继续分析;

1.3 数据到达时间(DAT:data arrival time)

所有的信号在FPGA内部传播都会有延时,包括时钟信号、数据信号(实际上不该如此可以的区分这两种信号,在一定条件下,这两个信号可能可以相互转换,这个是题外话了),也就是说,从信号的发出点到信号的接收点,会存在一个延时,这个延时可能是因为FPGA内部空间分布所致,也有可能是因为组合逻辑造成,这里不再深究;

图 4 数据到达时间示意图

正如上图所示,在计算数据到达时间时,一般都会存在3个延时:

1. Tclk1:时钟信号从起点(一般是PLL输出或者时钟输入引脚)到达启动寄存器(或说启动触发器)的相应clk端口所耗的时间;假如CLK是由PLL发出的时钟信号(称之为源时钟),这个信号经过FPGA内部的“连线”最终来到了REG1(启动触发器)的clk端,所以此时在REG的clk1处也会有周期性的时钟信号REG1.CLK(如图所示);可以看到,此时的CLK(源时钟)和REG1.CLK实际上有个(相位差)时间差,这个时间差就是Tclk1;

2. Tco:启动寄存器内部延时,是寄存器REG1感受到有效的上升沿后,到数据真正从从REG1的Q输出之间延时;请注意:上述所谓的有效的上升沿,就是REG1.CLK,而不是CLK;所以实际的有效数据输出的时序如上图的REG1.Q;

3. Tdata:数据从上级寄存器输出Q(经过所有其组合逻辑以及FPGA内部走线)到下级寄存器的数据输入D之间的延时;如图所示,数据从从REG1的Q流向了REG2的D,所以REG2.D实际感受到的数据时序是REG2.D;

假如将上图中的launch Edge作为时间0点,将一些列的延时累加,所得结果称之为数据到达时间,DAT:

DAT=启动沿+Tclk1+Tco+Tdata;

1.4 数据建立需要时间(DRTsu:data require time (setup))

图 5 数据建立需要时间

分析方法同上,需要计算数据建立时间,也需要两个延时:

1. Tclk2,不同于上述的Tclk1,这个延时是时钟从起点(一般是PLL或者时钟输入引脚)到锁存触发器之间的延时;如上图所示,REG2实际感受到的时钟来自于其本身的clk引脚,而不是源时钟CLK,之间存在一个延时,即Tclk2;所以REG2实际感受到的时钟,实际上是上图的REG2.CLK;

2. Tsu:上面分析过了,每一个数据被锁存都要满足建立时间和保持时间,Tsu就是建立时间,也就是在REG2实际感受到Latch Edge时,数据如果需要被正确锁存,就必须提前Tsu的时间来到REG2的D;

综合时钟走线延时Tclk2以及Tsu,我们得到了数据建立时间DRTsu:

DRTsu=锁存沿+Tclk2-Tsu。

也就是说在DRTsu时刻之前,数据必须已经有效且稳定

1.5 数据保持需要时间(DRTh:data require time (hold))

图 6 数据保持需要时间

即DRTh=锁存沿+Tclk2+Th;

也就是说,数据在DRTh时间之前必须保持住不变;

1.6 建立时间裕量(Setup Slack)

建立时间裕量指的是数据到达时间和数据建立需要时间之间的关系:

图 7 建立时间裕量

如上图所示,在0时刻(Launch edge),源时钟CLK说,“啊,我要产生一个新的数据”,但是这个命令(启动沿)并没有马上传达到REG1,而是有个延时Tclk1。所以在Tclk1时刻,REG1终于听到了(感受到了有效的时钟上升沿,就是启动沿)老大的命令,就开始准备,憋了一会儿,又延时了Tco,终于产生了数据(REG1.Q上有了valid data);这个有效数据也是慢吞吞的来到了终点,又浪费了Tdata。最终在Tclk1+Tco+Tdata时间后,REG2得到了这个数据;别以为REG2得到这个数据就完事了,REG2也是个傲娇的娃,怎么个傲娇法,下面继续分析;老大CLK在0时刻发送了启动沿之后,休息了一个时钟周期,在Latch edge时突然想起来,刚才让REG1发出的数据,REG2要接受啊,不然就浪费了,于是乎又对REG2下达了命令,新数据要来了,准备好接受!但是这个命令也不是马上就到了REG2的耳中,而是经过了Tclk2的时间。等到REG2接收到命令后(实际感受到了有效的Latch Edge),就看看自己家门口没有数据已经来了(检查REG2.D是否有数据),同时要看看这个数据是不是符合胃口的(满足锁存的条件),要求数据必须在接收到老大命令的时候已经等了Tsu时间(数据建立时间),由要求这个数据在家门口不能早退,必要再保持Th时间(数据保持),如果都满足了,REG2就开心的接受了这个数据,反之,就会觉得,REG1准备的数据太懒惰了(没有提前Tsu时间到达),又或者性子太急(没有多逗留th),一概不收!

所以这里涉及到两个要求,第一个就是建立时间裕量:

正如上图所示Setup Slack=DRTsu-DAT。

如果Setup Slack为正,则说明数据在规定的时间内达到了目标。反之,则认为数据并没有在规定的时间达到目标,此时REG2锁存的数据很有可能是亚稳态;

1.7 保持时间裕量(hold slack)

图 8保持时间裕量

如上所述,hold slack = DAT – DRTh

如果为正,则认为数据在被锁存的时候有足够多的稳定时间,是有效的。反之则认为数据有误或者数据可能是亚稳态;

小结:

理解了上面的7个概念,就明白了:如果时钟频率过快或者数据延时太大,都会导致错误的时序。在FPGA内部寄存器到内部寄存器之间,所有的延时都是建立在时序模型上的,如slow和fast,这些模型从两个极端工作情况来分析FPGA能否正常工作;只要满足这两个工况,则FPGA在其环境下都能满足时序!

​​
审核编辑:刘清

猜您喜欢


贴片电阻105和501,傻傻分不清楚?其实很简单!这两个数字代表的是电阻的尺寸,也就是我们常说的封装大小。105表示的是英制尺寸,对应的是0402封装。 记住,...
2024-11-29 10:25:53
现代电子产品的设计中,封装技术的选择至关重要。WSON(WaferLevelChipScalePackage)6引脚封装,尤其是3x3mm的尺寸,因其高效的性能...
2025-02-24 15:46:35
FPGA(Field-ProgrammableGateArray),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是...
2019-06-17 17:46:00
自动套膜机是高效的包装设备,应用于食品、饮料、日用化工等行业。其主要功能是通过自动化操作,将薄膜紧密包裹在产品外部,达到保护、保鲜和美观的目的。该设备采用先进的...
2022-04-19 00:00:00
SOT89是一种常见的表面贴装封装类型,广泛应用于电子元器件中,尤其是小型集成电路和功率器件。由于其小巧的尺寸和良好的散热性能,SOT89成为了现代电子产品设计...
2025-02-24 09:38:12
现代电子设备中,连接器的选择至关重要。SOW6_7.5X4.68MM作为一种新型连接器,以其优异的性能和灵活的应用受到广泛关注。本文将对SOW6_7.5X4.6...
2025-02-24 11:35:58
压敏电阻作为重要的过压保护元件,应用于各类电子设备中。泰科电子(TE Connectivity)作为全球知名的电子元件制造商,其压敏电阻产品因高品质和可靠性受到...
2017-04-07 08:03:30
分流器电阻作为电路中重要的元器件,其性能直接影响到整个系统的稳定性和准确性。KOA(兴亚)作为知名的电阻制造商,其分流器电阻凭借优异的品质和多样的参数选择,应用...
2016-02-17 01:33:08
可以像使用标准 PLC 数据类型 (UDT) 那样,声明和使用 F 型 PLC 数据类型 (UDT) 。可以在安全程序中以及标准用户程序中使用 F 型 PLC ...
2023-08-27 09:54:00
测量心率和脉搏波等低频生理信号在生物医学应用中起着至关重要的作用,可用于早期诊断心血管异常活动。柔性机械电子学的最新进展代表了一种用于在运动情境中测量心率的微型...
2024-07-08 17:01:00