首页 > 技术 > 内容

FPGA图像处理-Sobel边缘检测原理

时间:2025-11-30  作者:Diven  阅读:0

因为在做3*3卷积的时候,图像大小会变小,具体计算公式如下

其中O是输出特征图的大小,I是输入特征图的大小,P是Padding的大小,K是卷积核的大小,S是指Stride的大小,当K的值是3,P的值是1,S的值也是1,的时候O的值和I的值相等。

为了保持输出图像的大小在经过卷积后和输入的大小一样,我们需要进行Padding操作,在这里我采用了复制周围一圈的方式来完成。

采用python完成Sobel算法的参考模型

 

import cv2 as cvimport numpy as npimg = cv.imread(r"G:shiyanIDc.jpg")img_gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY)h, w = img_gray.shapeimg_padding = np.zeros((h + 2, w + 2), np.uint8)img_padding[1:h + 1, 1:w + 1] = img_grayimg_padding[0:1, 1:w + 1] = img_gray[0:1, :]img_padding[h + 1:h + 2, 1:w + 1] = img_gray[h - 1:h, :]img_padding[:, 0:1] = img_padding[:, 1:2]img_padding[:, w + 1:w + 2] = img_padding[:, w:w + 1]th = 200sobel_rf = np.zeros((h, w), np.uint8)for i in range(1, h): for j in range(1, w): gx1 = img_padding[i - 1][j + 1] + 2 * img_padding[i][j + 1] + img_padding[i + 1][j + 1] gx2 = img_padding[i - 1][j - 1] + 2 * img_padding[i][j - 1] + img_padding[i + 1][j - 1] gy1 = img_padding[i - 1][j - 1] + 2 * img_padding[i - 1][j] + img_padding[i - 1][j + 1] gy2 = img_padding[i + 1][j - 1] + 2 * img_padding[i + 1][j] + img_padding[i + 1][j + 1] gx = abs(gx1 - gx2) gy = abs(gy1 - gy2) if gx + gy > th: sobel_rf[i - 1][j - 1] = 255 else: sobel_rf[i - 1][j - 1] = 0cv.imshow("sobel_rf", sobel_rf)cv.imshow("src", img_gray)cv.waitKey()cv.destroyAllWindows()

 

根据算法模型完成HDL:提供SpinalHDL源码

 

import spinal.core._import spinal.lib._class Sobel(th: Int, imageColNum: Int, imageRowNum: Int) extends Component { val io = new Bundle { val dataIn = slave(ImageStream(8, imageColNum, imageRowNum, 1)) val dataOut = master(ImageStream(8, imageColNum, imageRowNum, 1)) } noIoPrefix() val genMatrix = new GenMatrix(scala.math.pow(2, log2Up(imageColNum)).toInt, imageColNum, imageRowNum) genMatrix.io.dataIn <> io.dataIn val genMatrixOut = ImageStream(8, imageColNum, imageRowNum, 9) genMatrixOut := genMatrix.io.dataOut val GX1 = RegNext(genMatrixOut.data(0).asUInt +^ (genMatrixOut.data(1) ## B"1'b0").asUInt +^ genMatrixOut.data(2).asUInt) val GX2 = RegNext(genMatrixOut.data(6).asUInt +^ (genMatrixOut.data(7) ## B"1'b0").asUInt +^ genMatrixOut.data(8).asUInt) val GX = Reg(UInt(11 bits)) val GY1 = RegNext(genMatrixOut.data(6).asUInt +^ (genMatrixOut.data(3) ## B"1'b0").asUInt +^ genMatrixOut.data(0).asUInt) val GY2 = RegNext(genMatrixOut.data(8).asUInt +^ (genMatrixOut.data(5) ## B"1'b0").asUInt +^ genMatrixOut.data(2).asUInt) val GY = Reg(UInt(11 bits)) when(GX1 > GX2) { GX := GX1 - GX2 } otherwise { GX := GX2 - GX1 } when(GY1 > GY2) { GY := GY1 - GY2 } otherwise { GY := GY2 - GY1 } val G = RegNext(GX + GY) val sobelOut = Reg(Bits(8 bits)) when(G > th) { sobelOut := 255 } otherwise { sobelOut := 0 } io.dataOut.data(0) := sobelOut io.dataOut.row := Delay(genMatrixOut.row, 4) io.dataOut.col := Delay(genMatrixOut.col, 4) io.dataOut.c.hsync := Delay(genMatrixOut.c.hsync, 4,init = False) io.dataOut.c.vsync := Delay(genMatrixOut.c.vsync, 4,init = False) io.dataOut.c.de := Delay(genMatrixOut.c.de, 4,init = False)}object Sobel extends App { SpinalConfig().generateVerilog(new Sobel(200, 640, 480))}

 

仿真代码:

 

import spinal.lib._import spinal.core._import spinal.core.sim._import scala.collection.mutable.Queueimport java.io.FileOutputStreamimport scala.io.Sourceclass tbSobelC(th: Int) extends Sobel(th, 430, 430) { var src = Array[String]() var destDut = Array[String]() var destRef = Array[String]() // var srcLen = 0 var width = Array[Int]() var high = Array[Int]() val dutData = Queue[Int]() val refData = Queue[Int]() var frameLen = 0 def init(srcFile: Array[String], destDutFile: Array[String], destRefFile: Array[String], imgShape: Array[(Int, Int)]) = { clockDomain.forkStimulus(10) io.dataIn.data(0) #= 0 io.dataIn.row #= 0 io.dataIn.col #= 0 src = srcFile destDut = destDutFile destRef = destRefFile io.dataIn.c.de #= false io.dataIn.c.vsync #= false io.dataIn.c.hsync #= false frameLen = src.length width = imgShape.map(i => i._1) high = imgShape.map(i => i._2) clockDomain.waitSampling(10) } def FRAMe(src: String, width: Int, high: Int) = { val srcFile = Source.fROMFile(src) val srcData = srcFile.getLines() var colCnt = 0 var rowCnt = 0 io.dataIn.row #= width io.dataIn.col #= high io.dataIn.c.de #= false io.dataIn.c.vsync #= false io.dataIn.c.hsync #= false clockDomain.waitSampling(20) while (srcData.hasNext) { val data = srcData.next() io.dataIn.data(0) #= data.toInt io.dataIn.c.de #= true if (colCnt == 0 && rowCnt == 0) { io.dataIn.c.vsync #= true println("xx") } else { io.dataIn.c.vsync #= false } if (colCnt == width - 1 && rowCnt == high - 1) { clockDomain.waitSampling(1) io.dataIn.c.de #= false clockDomain.waitSampling(200) } if (colCnt == 0) { io.dataIn.c.hsync #= true } else { io.dataIn.c.hsync #= false } if (colCnt == width - 1 && rowCnt != high - 1) { clockDomain.waitSampling(1) io.dataIn.c.de #= false clockDomain.waitSampling(20) } if (colCnt == width - 1) { colCnt = 0 if (rowCnt == high - 1) { rowCnt = 0 } else { rowCnt = rowCnt + 1 } } else { colCnt = colCnt + 1 } clockDomain.waitSampling() } clockDomain.waitSampling(1000) srcFile.close() } def driver = { val dri = fork { for (i <- 0 until fRAMeLen) { println(s"FRAMe = ${i}") fRAMe(src(i), width(i), high(i)) } } } def dutOut = { val dutOutFile = new FileOutputStream(destDut(0)) val d = fork { while (true) { if (io.dataOut.c.de.toBoolean) { dutData.enqueue(io.dataOut.data(0).toInt) dutOutFile.write((io.dataOut.data(0).toInt.toString + "").getBytes()) } clockDomain.waitSampling() } } } def refFun = { val d = fork { while (true) { for (i <- 0 until frameLen) { val file = Source.fROMFile(destRef(i)) val srcData = file.getLines() while (srcData.hasNext) { clockDomain.waitSampling() val data = srcData.next().toInt refData.enqueue(data) } } } } } def scoreBoard = { val d = fork { var index = 0 while (true) { while (dutData.nonEmpty && refData.nonEmpty) { clockDomain.waitSampling() val dut = dutData.dequeue() val ref = refData.dequeue() // if(dut != ref){ // println(s"i:${index} dutData:${dut} refData:${ref}") // } index = index + 1 assert(scala.math.ABS(ref - dut) < 5, s"index:${index}, dutData:${dut} refData:${ref}") // if (scala.math.ABS(ref - dut) != 0) { // println(s"ref = ${ref} , dut = ${dut}") // } } clockDomain.waitSampling() } } } def waitSimDone = { val d = fork { var index = 0 while (index < width(0) * high(0)) {        clockDomain.waitSampling()        if (io.dataOut.c.de.toBoolean) {          index = index + 1        }      }      clockDomain.waitSampling(3000)      simSuccess()    }.join()  }}class tbSobel {  val testFile = Array("testGray.txt")  val dutFile = Array("testDut.txt")  val refFile = Array("testSobel.txt")  val imgShape = Array((430, 430))    val dut = SimConfig.withConfig(SpinalConfig(inlineRom = true)).withWave.compile(new tbSobelC(100))  dut.doSim { dut => dut.init(testFile, dutFile, refFile, imgShape) dut.driver dut.refFun dut.dutOut dut.scoreBoard dut.waitSimDone }}object tbSobel extends App { val tb = new tbSobel}

 

经过分析之后,该代码可以跑到238MHz,占用330LUT,312FF。


审核编辑:刘清

猜您喜欢


RF放大器,作为射频信号处理的关键组件,应用于多个领域。在通信行业中,RF放大器是手机、无线电和卫星通信系统的重要组成部分,确保信号在长距离传输中的强度和清晰度...
2015-07-20 00:00:00
引言现代电子战环境日趋复杂,信号日趋密集,新体制雷达不断出现,雷达信号的各个参数以各种规律变化,因而从密集复杂的信号环境中分选和识别各种新体制雷达信号就成了电...
2018-08-26 10:03:00
扁平柔性跳线、电缆(FFC, FPC)是特殊设计的电缆,应用于电子设备中。FFC(Flat Flexible Cable)是由多根细导线组成的扁平电缆,具有高度...
2010-05-25 00:00:00
一、高精度位移传感器选型指南高精度位移传感器是一种能够精确测量物体位置变化的装置,它可以将物体的位移转化为电信号输出。在选型时,需要考虑多个因素以确保传感器能够...
2025-01-31 14:58:00
随着电子产品向小型化、高性能方向发展,贴片电阻成为电路设计中不可少的元件。其中,0402贴片电阻因其体积小、性能稳定而被应用。本文将围绕“0402贴片电阻阻值”...
2025-11-29 10:00:36
负偏压温度不稳定性(Negative Bias Temperature Instability,NBTI)、热载流子注入(Hot Carrier Injecti...
2022-09-02 16:31:00
电池是现代生活中不可少的能源储存装置,其作用而重要。电池为各种电子设备提供动力,从手机、笔记本电脑到家用电器,电池使我们的生活更加便利。在可再生能源领域,电池的...
2016-05-06 00:00:00
150贴片电阻的阻值是15欧姆。 贴片电阻的阻值通常用数字编码标注在元件表面。对于三位数的编码,前两位数字表示有效数字,第三位数字表示10的幂次方。因此,「15...
2024-11-26 11:29:44