首页 > 技术 > 内容

SRAM型FPGA在轨会遇到的问题及其影响

时间:2026-01-31  作者:Diven  阅读:0

深夜醒来,翻开枕边诗集,遥想当年,苏老举杯邀歌,写出了千古流传的《水调歌头》,“我欲乘风归去,又恐琼楼玉宇,高处不胜寒。起舞弄清影,何似在人间。”如今想来,苏老先生字里行间难掩对严寒天宫的向往,又终觉人间美好,我等后生晚辈做科研工作更是要脚踏实地。

在遥远的天宫,卫星工作的环境非常恶劣。卫星运行期间,不可避免地遭遇地球辐射带质子、银河宇宙线粒子、太阳宇宙线粒子轰击,这些辐射粒子,极易引起电子元器件的性能退化、逻辑功能错误、状态锁定等,从而导致电子设备的功能错误及异常,进而危害卫星的功能有着乃至运行安全。

SRAMFPGA属于核心元器件,因此对SRAMFPGA进行抗辐照加固设计非常必要。今天贫道主要给大家布道一下SRAM型FPGA在轨会遇到的问题及其影响。

1SEE分类

SRAM型FPGA空间应用下面临的主要问题是单粒子效应和总剂量效应。如图1所示,单粒子效应包括单粒子闩锁SEL,单粒子翻转SEU,单粒子瞬变SET和单粒子功能中断SEFI。SEL属于硬错误,可能会导致FPGA器件损伤。而SEU,SET和SEFI则属于软错误,一般不会对器件造成损伤,但会影响FPGA功能。

图1 元器件单粒子效应的分类

2TID

经常听说某国产元器件TID指标大于100Krad or 150K rad,为啥要定义这个指标呢?不同轨道的航天器遭受的年剂量是不一样的,比如LEO轨道遭受的只有几Krad[si],GEO轨道年剂量可能达到100Krad[si],而MEO轨道年剂量最高可达数百Krad[si]。

这里提到的指标是典型的3mm铝屏蔽下的年剂量,乘以卫星的使用寿命,并考虑2~3倍的抗辐射设计余量(RDM),就是型号任务通常的抗总剂量要求。为了满足总剂量的要求,可以通过设备机箱进行屏蔽,也可以通过整星设计,设备机箱结合其结构件组合屏蔽。一般到元器件层面总剂量指标大于100Krad能满足型号任务的需求。

3SEL

目前主流的SRAM型FPGA是CMOS工艺,由于天然的寄生效应,一个NMOS和一个PMOS串联起来产生PNPN结构。受单粒子效应的影响,PNPN会处于导通状态且不断电会一直处于导通状态,影响管子使用寿命。随着导通的管子数量增多,外在表现就是电流会阶梯型上升。某国产宇航级的FPGA会在芯片内部进行SEL特殊加固设计, 指标达到84 Mev.cm^2/mg板级设计不需要考虑额外的抗SEL设计。

工业级的FPGA则必须要在板级设计中考虑电源的监测和管理。由于电路的阶梯型上升特点,只对一级电源进行监测缺点是灵敏度不够,发现不了潜在的闩锁。最好对每路电源进行监测,提高灵敏度,一旦发生异常,采取断电重启。

图2 CMOS电路中的寄生效应

图3 发生SEL后电流阶梯型上升

4SEFI

SEFI分为应用级SEFI和器件级SEFI。如表1所示,器件级SEFI包括POR SEFI,SelectMAP SEFI,FAR SEFI和全局信号的SEFI。一般需要通过外部的刷新电路对器件级SEFI进行监测,并采取相应的应对措施。某国产宇航级的FPGA会在芯片内部进行SEFI特殊加固设计,指标达到37 Mev.cm^2/mg,极大增强了FPGA在轨稳定运行的能力。

图4 刷新芯片监测FPGA SEFI流程

表1 SEFI类型与解决措施

应用级SEFI需要把由SEU导致的用户层面逻辑功能异常刨除掉,专注一些基础性的一般性的东西,否则应用级SEFI就是一个模糊不清的概念。本文中应用级SEFI指的是时钟SET、复位毛刺和MMCM/PLL/DCM的功能异常,下面对应用级SEFI分类进行说明。

1)时钟SET

如图5所示,尽管对电路做了TMR加固,但时钟信号的SET会导致该时钟域下的所有寄存器发生SEU,最终Voter判定结果错误,TMR加固失效。

图5 时钟毛刺

对时钟网络推荐采用GTMR策略,时钟IO不做TMR,对BUFG做TMR。加固前单点失效路径是整个时钟routing,加固后单点失效路径是IO到BUFGs的交汇处,通常单点失效路径截面大为减少。

图6 GTMR有效降低时钟网络SET概率

2)复位毛刺

FPGA加载时用GSR来控制寄存器和状态机初值,因此并不需要额外产生复位信号来做初值控制。比如,不需要复位的寄存器(如数据流相关的寄存器)不设计外部复位,用GSR做初值控制。对复位毛刺很敏感的寄存器和状态机,可以改用同步复位,同步复位比异步复位消耗资源多一些,但比异步复位对毛刺敏感性低。

图7 异步复位同步释放电路

如果外部异步复位扇出较多的寄存器,可以用GTMR加固策略。复位信号经过3个BUFG走全局时钟专用网络,单路复位毛刺翻转影响不了另外两路复位信号对应的寄存器。

3)MMCM/PLL/DCM

MMCM/PLL/DCM的LOCK信号为高并不代表功能一定正常,因此建议开发缓解方案,例如通过计数器来检测MMCM/PLL/DCM输出故障。一旦MMCM/PLL/DCM发生故障,进行复位操作。

5SEU

单粒子翻转SEU可以发生在FPGA任意的资源上,比如配置SRAM、配置逻辑电路、用户逻辑DFF和块存储器等。

配置SRAM的SEU直接影响的是查找表LUT的值和互连资源的连接关系。查找表值的错误会导致用户逻辑功能出错,逻辑错误向下传播还可能导致时序单元出错。此外如果LUT用作了分布式RAM或者移位寄存器SRL,那么还会导致存储数据出错。

互连出错可能导致用户逻辑连接出错,连接错误向下传播可能导致时序单元出错。互连出错还可能导致互连产生短路,引起静态功耗增加。

触发器DFF的SEU会导致用户逻辑状态出错和FSM状态机出错。流水寄存器状态出错的影响仅限于单个时钟周期,因此影响比较小。FSM状态机出错可能会造成严重的影响。如图8 所示,状态机如果发生翻转至为定义的状态,那会导致状态机锁死,用户功能无法恢复。

图8 状态机发生SEU导致锁死

BRAM块存储器发生SEU可能会造成功能出错。当BRAM资源用作ROMROM存储重要的参数,重要参数发生错误会导致用户功能受到严重影响。比如FPGA内部跑软核,程序存储在FPGA内部的BRAM资源中,BRAM程序区的SEU会导致指针乱跳,程序跑飞。

图9 软核存储器发生SEU导致程序跑飞

战术

对于SRAM型的FPGA而言,单粒子效应SEE可产生严重的影响。贫道今天给大家介绍了SEE的各个细分,包括SEL、SEFI、SEU和SET。那么针对不同细分,有什么解决方法,该采取什么样的应对措施,又如何验证措施的有效性呢?欲知后事如何、且听下回分解。

审核编辑:汤梓红

猜您喜欢


经纬仪是精密的测量仪器,应用于多个领域。在建筑工程中,经纬仪用于测量和放样,为建筑物的基础和结构提供准确的定位。在土地测量领域,专业测量师借助经纬仪进行土地的界...
2011-11-27 00:00:00
贴片电阻上的5R1表示其阻值为5.1欧姆。字母R代表小数点。测量贴片电阻阻值的方法主要有两种:使用万用表:将万用表拨至电阻档(Ω),选择合适的量程。将万用表的两...
2024-11-29 10:26:17
电子元器件中,电容是一个重要的部分。固态电容和铝电解电容是常见的两种类型。有很多区别,适用场合也不同。本文将详细介绍这两种电容的不同之处。 基本构造不同固态电容...
2025-04-02 10:31:39
贴片电阻,作为电子电路中很重要的元件,种类繁多,各有特点。根据不同的材质和制造工艺,可以大致分为以下几类:首先是厚膜电阻,这是目前市场上最常见的类型。采用丝网印...
2024-11-29 10:25:44
开关二极管是重要的电子元件,应用于电路设计中,其主要优势体现在以下几个方面。开关二极管具有极低的反向漏电流,这使得在高频开关应用中表现出色,能够有效减少能量损耗...
2018-01-28 00:00:00
电容式锂电池,用于电子设备。有着高能量密度和长寿命。了解充电方法,能提高电池性能。本文将介绍电容式锂电池的充电方法。选择合适的充电器充电器要适配电池。不同电池需...
2025-03-27 08:01:39
采样电阻作为精密测量与控制的关键组件,是不可少的配件。而提及这一领域的国际巨头,Samsung(三星)无疑是绕不开的名字。本文旨在深入探讨三星采样电阻品牌的国家...
2022-08-24 17:52:48
分析仪作为现代实验室的重要工具,具有诸多显著优势。提供高精度的测量结果,能够有效提高实验数据的可靠性和重复性。这对于科研和工业生产中的质量控制非常重要。分析仪具...
2012-01-28 00:00:00
贴片电阻常用单位包括欧姆(Ω)、千欧(kΩ)、兆欧(MΩ)。它们之间的换算关系如下:1 kΩ = 1000 Ω (一千欧等于一千欧姆)1 MΩ = 1000 k...
2024-11-26 11:29:32