中国科大在机器人触觉传感器研究中取得突破

时间:2025-11-01  作者:Diven  阅读:0

红外火焰传感器可以用来探测火源或其一些波长在700纳米~1000纳米范围内的热源,在机器人比赛中,远红外火焰探头起到非常重要的作用,可以用作机器人的眼睛来寻找火源或足球。利用可以制作灭火机器人等。红外火焰传感器能够探测700纳米~1000纳米范围内的红外光,探测角度为60,其中红外光波长在880纳米附近时,其灵敏度达到最大。红外火焰探头将外界红外光的强弱变化转化为电流的变化,通过A/D转换器反映为0 ~4095范围内的数值的变化。外界红外光越强,数值越小;红外光越弱,数值越大。

中国科大在机器人触觉传感器研究中取得突破

1、模块来源

模块实物展示:

wKgZPGdH4UmAN_ROAAAmboBipNA518.jpg


资料下载链接:
https://pan.baidu.com/s/14rzP9Gx7AjbmRSqD_A5Pyw
提取码:risv

2、规格参数

工作电压:3.3V-5V

探测距离:1米

输出方式: DO接口为数字量输出 AO接口为模拟量输出

读取方式:ADC与数字量(0和1)

管脚数量:4 Pin(2.54mm间距排针)

以上信息见厂家资料文件

3、移植过程

我们的目标是将例程移植至CW32F030C8T6开发板上【判断当前检测范围是否有火光的功能】。首先要获取资料,查看数据手册应如何实现读取数据,再移植至我们的工程。

3.1查看资料

火焰传感器模块的工作原理很简单。其背后的理论是热的物体会发出红外辐射。对于火焰或火灾,这种辐射会很高。我们将使用红外光电二极管检测这种红外辐射。光电二极管的电导率将根据其检测到的红外辐射而变化。我们使用 LM393 来比较这种辐射,当达到阈值时,数字输出会发生变化。我们还可以使用模拟输出来测量红外辐射强度。模拟输出直接取自光电二极管端子。板载 D0 LED 将在检测到时显示存在火灾。灵敏度可以通过调整板上的可变电阻来改变。这可用于消除误触发。其对应的原理图,AO输出为火焰传感器直接输出的电压,所以为模拟量;DO为经过LM393进行电压比较后,输出高低电平,所以为数字量。具体原理见光敏电阻光照传感器章节的资料。

wKgZO2dH4UqASpe1AABrlq6Eg9w258.jpg

3.2引脚选择

想要使用ADC,需要确定使用的引脚是否有ADC外设功能。可以通过手册进行查看。在用户手册439页。

这里选择使用PA5的附加ADC功能。

wKgZPGdH4UqAeLUyAACDZm9JaKk391.jpg


有ADC功能的引脚

wKgZPGdH4UqAFey0AAEdPL7Wjpw779.jpg

模块接线图

3.3查移植至工程

模块工程参考入门手册工程模板

移植步骤中的导入.c和.h文件与【CW32模块使用】DHT11温湿度传感器相同,只是将.c和.h文件更改为bsp_flame.c与bsp_flame.h。这里不再过多讲述,移植完成后面修改相关代码。

在文件bsp_flame.c中,编写如下代码。

#include "bsp_flame.h"void ADC_FLAME_Init(void){ GPIO_InitTypeDef GPIO_InitStruct; // GPIO初始化结构体 RCC_FLAME_GPIO_ENABLE(); // 使能GPIO时钟 RCC_FLAME_ADC_ENABLE(); // 使能ADC时钟 GPIO_InitStruct.Pins = GPIO_FLAME_DO; // GPIO引脚 GPIO_InitStruct.Mode = GPIO_MODE_INPUT; // 输入模式 GPIO_Init(PORT_GPIO_FLAME, &GPIO_InitStruct); // 初始化 ANALOG_GPIO_ENABLE(); // PA05设定为模拟输入 ADC_InitTypeDef ADC_InitStructure; // ADC初始化结构体 ADC_WdtTypeDef ADC_WdtStructure; // ADC看门狗结构体 ADC_SingleChTypeDef ADC_SingleChStructure; // ADC单通道转换结构体 // 配置ADC初始化结构体 ADC_InitStructure.ADC_OpMode = ADC_SingleChOneMode; //单通道单次转换模式 ADC_InitStructure.ADC_ClkDiv = ADC_Clk_Div4; // 时钟频率 = PCLK / 4 = 64MHz / 4 = 16MHz ADC_InitStructure.ADC_SampleTime = ADC_SampTime5Clk; //5个ADC时钟周期 ADC_InitStructure.ADC_VrefSel = ADC_Vref_VDDA; //VDDA参考电压 ADC_InitStructure.ADC_InBufEn = ADC_BufDisable; //关闭跟随器 ADC_InitStructure.ADC_TsEn = ADC_TsDisable; //关闭内置温度传感器 ADC_InitStructure.ADC_DMAEn = ADC_DmaDisable; //不触发DMA ADC_InitStructure.ADC_Align = ADC_AlignRight; //ADC转换结果右对齐 ADC_InitStructure.ADC_AccEn = ADC_AccDisable; //转换结果累加不使能 //ADC模拟看门狗通道初始化 ADC_WdtInit(&ADC_WdtStructure); //配置单通道转换模式 ADC_SingleChStructure.ADC_DiscardEn = ADC_DiscardNull; // 单通道ADC转换结果溢出保存 ADC_SingleChStructure.ADC_Chmux = CHANNEL_ADC; // 选择ADC转换通道,AIN5:PA05 ADC_SingleChStructure.ADC_InitStruct = ADC_InitStructure; // ADC初始化结构体 ADC_SingleChStructure.ADC_WdtStruct = ADC_WdtStructure; // ADC看门狗结构体 ADC_SingleChOneModeCfg(&ADC_SingleChStructure); // 初始化配置 ADC_Enable(); //ADC使能 ADC_SoftwareStartConvCmd(ENABLE); //启动ADC转换}uint32_t ADC_GET(void){ ADC_SoftwareStartConvCmd(ENABLE); //启动ADC转换 uint32_t adcValue = ADC_GetConversionValue(); // 获取数据 return adcValue;}unsigned int Get_FLAME_Percentage_value(void){ uint32_t i = 0; uint32_t adc_max = 4095; uint32_t adc_new = 0; uint32_t Percentage_value = 0; for(i = 0; i < SAMPLES; i++) { // 数值累加 adc_new += ADC_GET(); } adc_new = adc_new / SAMPLES; Percentage_value = ( 1.0f - ( (float)adc_new / (float)adc_max ) ) * 100.0f; return Percentage_value;}unsigned char Get_FLAME_Do_value(void){ return GPIO_ReadPin(PORT_GPIO_FLAME, GPIO_FLAME_DO);}

在文件bsp_flame.h中,编写如下代码。

#ifndef _BSP_FLAME_H_#define _BSP_FLAME_H_#include "board.h"#define RCC_FLAME_GPIO_ENABLE() __RCC_GPIOA_CLK_ENABLE()#define RCC_FLAME_ADC_ENABLE() __RCC_ADC_CLK_ENABLE()#define CHANNEL_ADC ADC_ExInputCH5#define ANALOG_GPIO_ENABLE() PA05_ANALOG_ENABLE()#define PORT_GPIO_FLAME CW_GPIOA#define GPIO_FLAME_AO GPIO_PIN_5#define GPIO_FLAME_DO GPIO_PIN_6 //采样次数#define SAMPLES 30void ADC_FLAME_Init(void);unsigned int Get_FLAME_Percentage_value(void);unsigned char Get_FLAME_Do_value(void);#endif

4、移植验证

在自己工程中的main主函数中,编写如下。

#include "board.h"#include "stdio.h"#include "bsp_uart.h"#include "bsp_flame.h"int32_t main(void){ board_init(); // 开发板初始化 uart1_init(115200); // 串口1波特率115200 ADC_FLAME_Init(); while(1) { printf("火焰百分比 = %d%%rn",Get_FLAME_Percentage_value()); delay_ms(500); }}

移植现象:输出检测火光的百分比。

可以自行测试点燃纸巾靠近传感器,百分比会上升!

wKgZO2dH4UuALO_eAADY9Px2hN0411.jpg

模块移植成功案例代码:

链接:https://pan.baidu.com/s/1AcoeElqi8gIXBQ-7_vWWXA?pwd=LCKF

提取码:LCKF

猜您喜欢

电解电容在电子设备中是常见元件。很多人对的引脚有疑问。今天,我们就来讨论电解电容引脚长的是正极吗。电解电容基本知识电解电容是电容的。有两个引脚,分别是正极和负极...
2025-03-24 09:31:39

焊接面罩是焊接作业中不可少的重要防护装备,主要作用是保护焊工的面部和眼睛免受高温、强光和有害气体的伤害。在焊接过程中,产生的强光和紫外线会对眼睛造成严重损害,甚...
2015-06-11 00:00:00

移位寄存器是重要的数字电路元件,应用于数据存储和传输中。基本功能是将输入的数据位按照一定的顺序进行移位,从而实现数据的暂存和处理。移位寄存器通常由多个触发器串联...
2025-01-11 00:00:00

冷缩胶带和管材是现代工业中不可少的材料,应用于电力、通信、交通等领域。根据不同的用途和特性,冷缩胶带和管材可以分为几大类。按材料分类,冷缩胶带主要有PVC、PE...
2016-10-06 00:00:00

移液器具应用于多个领域,成为实验室和工业生产中不可少的工具。在生物医学领域,移液器用于样本的转移和液体的精准计量,帮助研究人员进行细胞培养、药物筛选和基因测序等...
2019-03-29 00:00:00

贴片电阻阻值表1%指的是电阻的精度。表示电阻的实际阻值与标称阻值之间的最大偏差为±1%。例如,一个标称阻值为100欧姆,精度为1%的贴片电阻,其实际阻值可能在9...
2024-11-29 10:26:16

振动马达是应用于工业和日常生活中的设备,其性能参数直接影响到其使用效果。振动频率是一个重要参数,通常以赫兹(Hz)为单位,表示马达每秒钟振动的次数。频率的选择取...
2010-07-26 00:00:00

贴片电阻,作为电子电路中不可或缺的元件,其封装尺寸对于电路设计和PCB板布局至关重要。不同的尺寸对应着不同的功率和应用场景,选择合适的尺寸才能确保电路的正常工作...
2025-04-14 15:02:18

聚丙烯膜电容和薄膜电容都是常见的电容器。在电路中都起着重要的作用。但是,之间有许多不同之处。下面我们将详细介绍这两种电容器的区别。材料组成聚丙烯膜电容主要是用聚...
2025-04-12 05:01:11

防硫化电阻作为重要的元器件,应用于各种电路中以保证设备的稳定运行。科达嘉(CODACA)作为国内知名的防硫化电阻品牌,很好的性能和可靠的品质赢得了市场的认可。本...
2024-12-24 08:20:01