首页 > 技术 > 内容

基于FPGA的DCM时钟管理单元概述

时间:2025-12-01  作者:Diven  阅读:0

看Xilinx的Datasheet会注意到Xilinx的FPGA没有PLL,其实DCM就是时钟管理单元。

1、DCM概述

DCM内部是DLL(Delay Lock Loop结构,对时钟偏移量的调节是通过长的延时线形成的。DCM的参数里有一个PHASESHIFT(相移),可以从0变到255。所以我们可以假设内部结构里从输入引脚clkin到输出引脚clk_1x之间应该有256根延时线(实际上,由于对不同频率的时钟都可以从0变到255,延时线的真正数目应该比这个大得多)。DCM总会把输入时钟clkin和反馈时钟CLKFB相比较,如果延时差不等于所设置的PHASESHIFT,DCM就会改变在clkin和clk_1x之间的延时线数目,直到相等为止,输出和输入形成闭环,动态调整到设定值再退出。这个从不等到相等所花的时间,就是输出时钟锁定的时间,相等以后,lock_flag标识才会升高。

当DCM发现clkin和clkfb位相差不等于PHASESHIFT的时候,就去调节clk_1x和clkin之间延时,所以如果clk_1x和clkfb不相关的话,那就永远也不能锁定了。

图一、DCM和BUFG配合使用示意图

2、如何使用DCM

DCM一般和BUFG配合使用,要加上BUFG,应该是为了增强时钟的驱动能力。DCM的一般使用方法是,将其输出clk_1x接在BUFG的输入引脚上,BUFG的输出引脚反馈回来接在DCM的反馈时钟脚CLKFB上。另外,在FPGA里,只有BUFG的输出引脚接在时钟网络上,所以一般来说你可以不使用DCM,但你一定会使用BUFG。有些兄弟总喜欢直接将外部输入的时钟驱动内部的寄存器,其实这个时候虽然你没有明显地例化BUFG,但工具会自动给你加上的。

3、使用DCM可以消除时钟skew

使用DCM可以消除时钟skew。这个东西一直是我以前所没有想清楚的,时钟从DCM输出开始走线到寄存器,这段skew的时间总是存在的,为什么用DCM就可以消除呢?直到有一天忽然豁然开朗,才明白其原委。对高手来说,也许是极为easy的事情,但也许有些朋友并不一定了解,所以写出来和大家共享。

为说明方便起见,我们将BUFG的输出引脚叫做clk_o,从clk_o走全局时钟布线到寄存器时叫做clk_o_reg,从clk_o走线到DCM的反馈引脚CLKFB上时叫clkfb,如图所示。实际上clk_o, clk_o_reg, clkfb全部是用导线连在一起的。

所谓时钟skew,指的就是clk_o到clk_o_reg之间的延时。如果打开FPGA_Editor看底层的结构,就可以发现虽然DCM和BUFG离得很近,但是从clk_o到clkfb却绕了很长一段才走回来,从而导致从clk_o到clk_o_reg和clkfb的延时大致相等。

总之就是clk_o_reg和clkfb的相位应该相等。所以当DCM调节clkin和clkfb的相位相等时,实际上就调节了clkin和clk_o_reg相等。而至于clk_1x和clk_o的相位必然是超前于clkin, clkfb, clk_o_reg的,而clk_1x和clk_o之间的延时就很明显,就是经过那个BUFG的延迟时间。

4、对时钟skew的进一步讨论

说一说时钟skew的概念。时钟skew实际上指的是时钟驱动不同的寄存器时,由于寄存器之间可能会隔得比较远,所以时钟到达不同的寄存器的时间可能会不一样,这个时间差称为时钟skew。这种时钟skew可以通过时钟树来解决,也就是使时钟布线形成树状结构,使得时钟到每一个寄存器的距离是一样的。很多FPGA芯片里就布了这样的时钟树结构。也就是说,在这种芯片里,时钟skew基本上是不存在的。

说到这里,似乎有了一个矛盾,既然时钟skew的问题用时钟树就解决了,那么为什么还需要DCM+BUFG来解决这个问题?另外,既然时钟skew指的是时钟驱动不同寄存器之间的延时,那么上面所说的clk_o到clk_o_reg岂非不能称为时钟skew?

先说后一个问题。在一块FPGA内部,时钟skew问题确实已经被FPGA的时钟方案树解决,在这个前提下clk_o到clk_o_reg充其量只能叫做时钟延时,而不能称之为时钟skew。可惜的是FPGA的设计不可能永远只在内部做事情,必然和外部交换数据。例如从外部传过来一个32位的数据以及随路时钟,数据和随路时钟之间满足建立保持时间关系(Setup Hold time),你如何将这32位的数据接收进来?如果你不使用DCM,直接将clkin接在BUFG的输入引脚上,那么从你的clk_o_reg就必然和clkin之间有个延时,那么你的clk_o_reg还能保持和进来的数据之间的建立保持关系吗?显然不能。相反,如果你采用了DCM,接上反馈时钟,那么clk_o_reg和clkin同相,就可以利用去锁存进来的数据。可见,DCM+BUFG的方案就是为了解决这个问题。而这个时候clk_o到clk_o_reg的延时,我们可以看到做内部寄存器和其芯片传过来的数据之间的时钟skew。

由此,我们可以得出一个推论,从晶振出来的时钟作为FPGA的系统时钟时,我们可以不经过DCM,而直接接到BUFG上就可以,因为我们并不在意从clkin到clk_o_reg的这段延时。

猜您喜欢


现代电子设备和机械系统中,连接器的作用不可小觑。CONN_14X9.25MM_TM作为高性能连接器,因其独特的设计和很好的性能而受到关注。本文将深入探讨CONN...
2025-04-24 00:00:07
计量泵配件在工业和实验室中是非常重要的配件。不仅确保泵的正常运行,还提高了泵的精准度和效率。计量泵的配件如阀门、密封圈和滤网,可以有效防止液体泄漏,确保操作安全...
2010-03-05 00:00:00
电解电容是电子元件中常见的。在电路中起着重要的作用。电解电容的脚距,影响了元件的安装和使用。本文将详细介绍电解电容脚距的相关知识。什么是电解电容脚距?电解电容脚...
2025-03-22 21:00:02
日常生活中,电池作为重要的电源设备,被应用于各种电子产品中。正确判断电池的正负极对于设备的正常运作非常重要。传统方法可能需要使用多用电表等工具,而使用发光二极管...
2025-04-09 16:30:06
你是否想过,智能手机是如何在纤薄的机身中,依然能提供长时间续航?电动汽车如何高效地利用电池能量?这些都离不开一项关键技术——电源管理IC。电源管理IC,顾名思义...
2024-05-23 00:00:00
电流采样电阻作为电路设计中的关键元件,受到越来越多工程师和设计人员的关注。富之光(FUJICON)作为知名的电子元器件品牌,其生产的电流采样电阻因性能稳定、参数...
2022-10-18 18:48:43
现代市场中,配件的选择对于产品的成功非常重要。尤其是在电子产品、机械设备等领域,合适的配件不仅能提高产品的性能,还能增强用户体验。今天,我们将重点讨论“Acce...
2025-04-20 11:30:11
三极管(BJT)是重要的电子元件,应用于各种电子电路中。主要作用是放大和开关信号。作为半导体器件,三极管可以将微弱的输入信号放大成更强的输出信号,这一特性使得在...
2008-10-23 00:00:00
什么是三态电路一般来说,我们认为CMOS数字电路的输出的稳定状态只有2种,就是逻辑0和逻辑1,从模拟信号量来说,就是0V和VDD。那么有些小伙伴会说了,实际上输...
2023-08-01 16:32:00