Xilinx-7Series-FPGA高速收发器使用学习

时间:2025-11-02  作者:Diven  阅读:0

每一个收发器拥有一个独立的发送端,发送端有PMA(PhysICal Media Attachment,物理媒介适配层)和PCS(PhysICalCoding Sublayer,物理编码子层)组成,其中PMA子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS子层包含8B/10B编解码、缓冲区、通道绑定和时钟修正等电路。对于GTX的发送端来说,结构如图1所示。

Xilinx-7Series-FPGA高速收发器使用学习

图1

FPGA内部并行数据通过FPGATX Interface进入TX发送端,然后经过PCS和PMA子层的各个功能电路处理之后,最终从TX驱动器中以高速串行数据输出,下面将介绍各个功能电路。

FPGA TX Interface用户接口:TX Interface是用户数据发往GTX的接口,该接口的信号如表1所示。

表1

发送数据接口是TXDATA,采样时钟是TXUSRCLK2,在TXUSRCLK2的上升沿对TXDATA进行采样。TXUSRCLK2的速率由线速率、TX Interface接口位宽和8B/10B是否使能决定(TXUSRCLK2频率= 线速率/ TX_DATA_WIDTH ;比如线速率是10Gb/s,TX_DATA_WHDTH等于80,那么TXUSRCLK2的频率是125MHz)。TXDATA的位宽可以配置成16/20/32/40/64/80位宽,通过TX_DATA_WIDTH 、TX_INT_DATAWIDTH、TX8B10BEN三个属性设置可以配置成不同的位宽,具体属性如表2所示。

表2

GTX的TX Interface分成内部数据位宽和FPGA接口位宽,其中内部数据归属于TXUSRCLK时钟域,FPGA接口数据归属于TXUSRCLK2时钟域,而内部数据位宽支持2byte/4byte,FPGA接口数据位宽支持2byte/4byte/8byte,决定了TXUSRCLK和TXUSRCLK2有一定的时钟倍数关系,TXUSRCLK和TXUSRCLK2的时钟倍数关系如表3所示,其中TX_INT_DATAWIDTH属性设置为“0”,表示内部数据位宽为2byte,如果设置为“1”,则表示内部数据位宽为4byte(线速率大于6.6Gb/s的时候应当置“1”)。

表3

TXUSRLK和TXUSRCLK2时钟是相关联的,在时钟这两个时钟时应该遵循下面两个准则:

1. TXUSRCLK和TXUSRCLK2必须是上升沿对齐的,偏差越小越好,因此应该使用BUFGs或者BUFRs来驱动这两个时钟(因为TX Interface和PCS子层之间没有相位校正电路或者FIFO,所以需要严格对齐,本人自己的理解)。

2. 即使TXUSRCLK、TXUSRCLK2和GTX的参考时钟运行在不同的时钟频率,必须保证三者必须使用同源时钟。

发送端的时钟结构:为了能够更好的理解GTX的发送端如何工作,理解发送端的时钟结构很有必要,图2是发送端的时钟结构图。

图2

其中红框部分和黄底部分的内容是我们需要重点了解的地方,图中的MGTREFCLK是上一篇中提到的GTX的参考时钟,经过一个IBUFDS_GTE2源语之后进入GTX,用以驱动CPLL或者QPLL。对于TX PMA来说,主要实现的功能是并串转换,其并串转换的时钟可以由CPLL提供,也可以由QPLL提供,由TXSYSCLKSEL选择,TX PMA子层里面有三个红色方框部分是串行和并行时钟分频器,作用是产生并行数据的驱动时钟,其中D分频器主要用于将PLL的输出分频,以支持更低的线速率。

÷2/÷4这个选项由TX_INT_DATAWIDTH决定,如果TX_INT_DATAWIDTH为“0”,则选择÷2,反之选择÷4。

对于÷4/÷5,则由TX_DATA_WIDTH决定,如果是位宽是16/32/64,则选择÷4,如果位宽是20/40/80,则选择÷5。

对于TXUSRCLK和TXUSRCLK2由谁驱动呢,官方推荐使用TXOUTCLK驱动,这样做能精简设计,同时稳定,如何使用TXOUTCLK来做TXUSRCLK和TXUSRCLK2的驱动时钟呢,根据TXUSRCLK和TXUSRCLK2的频率关系,以一个Lane为例,图3表示TXUSRCLK=TXUSRCLK2的驱动方式,图4表示TXUSRCLK = 2*TXUSRCLK2的驱动方式。

图4

对于图4,CLKOUT0的值为CLKOUT1的2倍。

TX 8B/10B Encoder:高速收发器的发送端一般都带有8b/10b编码器。目的是保证数据有足够的切换提供给时钟恢复电路,编码器还提供将数据对齐到字的方法,同时线路可以保持良好的直流平衡。在GTX应用中,如果发送的是D码,则需要将TXCHARISK拉低,如果是K码,则将相应的TXCHARISK拉高。

TX Buffer:了解发送的TXBuffer的作用,首先得搞清楚TX发送端的时钟域,TX发送端的时钟域如图5所示。

图5

图5中红色方框就是TXBuffer,我们都知道FIFO具有隔离时钟域的功能,在这里也不例外,我们从图中可以知道,TX Buffer连接着两个不同的时钟域XCLK和TXUSRCLK,在发送端的PCS子层内部包含两个时钟域,XCLK(PMA并行时钟域)TXUSRCLK时钟域,为了数据发送的稳定,XCLK和TXUSRCLK必须是速率匹配,相位差可以消除的,TX Buffer主要用于匹配两时钟域的速率和消除两时钟域之间的相位差。

TX Buffer也可以被旁路,TX发送端提供了一个相位对齐电路,可以解决XCLK和TXUSRCLK时钟域之间的相位差,但是TX_XCLK_SEL需设置为“TXUSR”来保持XCLK时钟域和TXUSRCLK保持同频。

TX Pattern Generator:GTX拥有伪随机数列产生电路,伪随机数列是之中看似随机,但是是有规律的周期性二进制数列,有良好的随机性和接近白噪声的相关函数,所以伪随机数列可以用来做误码率测量、时延测量、噪声发生器、通信加密和扩频通信等等领域,在GTX中可以用来测试高速串行通道传输的误码率,图6是GTX的PRBS生成电路。

图6

可以使能或者旁路这个PRBS生成电路,如果旁路的话TXDATA会传输到发送端的PMA。一般使用PRBS模式测试模型如图7所示。

图7

TX Polarity Control:TX发送端支持对TX发送的数据进行极性控制,从PCS子层输出的编码数据在进入PISO串行化之前进行极性翻转,这部分功能主要是用来弥补PCB的设计错误,如果PCB设计时不慎将TXP和TXN交叉连接的话,可以通过设置TXPOLARITY为“1”来翻转信号的极性,。

猜您喜欢

脚手架是建筑工程中不可少的支撑结构,其参数直接影响施工的安全性和效率。脚手架的高度和宽度是基本参数,通常根据施工项目的需求来定制。承载能力是关键指标,需根据施工...
2019-03-02 00:00:00

NTC热敏电阻延长线是应用于温度测量和控制领域的电子元件。NTC代表负温度系数(Negative Temperature Coefficient),意味着其电阻...
2025-04-15 04:01:10

瓷管电阻作为重要的电子元件,因其优良的耐高温和稳定性能应用于各种电子设备中。作为知名品牌,TDK生产的瓷管电阻很好的品质和可靠的性能受到业内认可。本文将详细介绍...
2024-01-12 02:27:14

白板作为现代办公和教学中常见的工具,其种类繁多,各具特色。白板可以分为干擦白板和湿擦白板。干擦白板使用专用的干擦笔,书写流畅,易于清除,非常适合快速记录和修改。...
2009-11-10 00:00:00

DocNav(Documentation Navigator)可以看作是Xilinx的文档、视频“集装箱”,几乎所有与芯片、开发工具、设计方法、IP等相关的文档...
2018-06-05 05:05:00

贴片电阻盘装每圈数量的计算,需要考虑两个主要因素:盘的尺寸和元件的尺寸。我们需要知道盘的有效直径,即除去中心不可用区域后的直径。这个值通常印在盘的标签上,或者可...
2024-11-29 10:25:39

1.时机在世界范围内,广播视频系统的需求都在逐年显著增加,原因是以下的一些因素同时发生了作用:可供观众选择的广播频道的增加。世界范围内,更多观众的选择从很少...
2020-09-17 15:16:00

电容是电子电路中重要的元件。能储存电能,应用。本文将介绍电容的九大作用,帮助大家更好理解这个元件。储能功能电容可以储存电能。的电能储存能力很强。电容器充电时,会...
2025-03-25 22:31:08

低压降肖特基二极管是应用于电子电路中的半导体器件,快速开关特性和低正向导通电压而受到青睐。随着科技的发展,低压降肖特基二极管在电源管理、整流电路、逆变器等领域的...
2025-04-08 12:31:40

硅胶枪是应用于家庭和工业领域的工具,其主要优势不容忽视。硅胶枪操作简单,适合各种用户,无论是专业人士还是家庭DIY爱好者,都能轻松上手。硅胶枪能够提供均匀稳定的...
2021-12-17 00:00:00