首页 > 技术 > 内容

顶级FPGA和GPU的PK

时间:2026-01-16  作者:Diven  阅读:0

本部分,我们就跟随作者一起看看Intel Stratix10 NX和Nvidia在这个领域的利器T4以及V100之间的对比,过程分为芯片级对比以及系统级对比。

本部分一起先来看看芯片级对比

首先来看下我们的GPU对手——Nvidia T4和V100分别有320个和640个张量核(专门用于AI工作负载的矩阵乘法引擎)

Nvidia Tesla T4

Nvidia Tesla V100

下面表格了与Stratix10 NX和这些同代工艺GPU的关键指标对比。 就Die尺寸来说,V100是Nvidia最大的12nm GPU,几乎比T4大50%,而Stratix10 NX比两种GPU都小。

文章使用GPU最擅长处理的工作负载:通用矩阵乘(GEMM)来跑GPU的benchmark(什么是GEMM请移步https://spatial-lang.org/gemm),为了测量最佳的GPU性能,对每个器件使用最新的library,这些库不会出错,并且分别在使用和不使用张量核的情况下测试性能。对于fp32和fp16实验,分别使用CUDA10.0和10.2的CuBLAS库进行V100和T4。对于int8,我们使用CUDA10.2中的cuBLASLt库,这样可以比cuBLAS库获得更高的int8性能。文章使用Nvidia的官方(高度优化)的cuDNN kernel来处理DL工作负载,并且分别对V100和T4使用了从cuDNN7.6.2和7.6.5。 (cuBLAS API,从cuda6.0开始;cuBLASLt API,从cuda10.1开始)

cuDNN库不支持int8计算kernel,但支持将所有模型权重保存在片上内存中。对于每个工作负载、问题大小和序列长度,文章在两种GPU上运行了所有可能的配置组合,如精度{fp32、fp16、int8}、计算样式{persistent、non-persistent}、张量核心设置{enable、disable}。然后,选择最佳的性能,来和Stratix10 NX的NPU进行比较。 这里因为是芯片级对比,所以只考虑了芯核的计算效率,不包括任何初始化、芯核启动或主机-GPU数据传输开销。

下图给出了T4和V100 GPU上fp32、fp16和int8精度的GEMM benchmark测试结果。结果表明,相对于张量核禁用情况(蓝线),启用张量核(红线) 可以显著提高GPU在GEMM上的性能。

一个普遍的趋势是,张量核虽然是为GEMM设计的,但在矩阵大小为2048或以下情况时的利用效率明显不如峰值情况(红色虚线)。因此要实现高利用率,除非工作负载中的矩阵大小非常大,而这在实际DL工作负载中并不常见。T4和V100上的张量核都不支持fp32的精度,而是在执行乘法运算之前,将fp32数据转换为fp16。相对于纯fp16 GEMM,这种数据转换开销降低了张量核性能。另一个有趣的情况是,当T4张量核在int8模式下工作时,需要将输入矩阵从标准的行/列主要格式转换为特定于张量核的布局。即使在处理非常大的8192×8192矩阵时,在张量核(没有标记的红线)上实现的int8性能还不到峰值性能的45%。

为了更好地理解这种数据转换的开销,文章还进行了一个额外的实验,在这个实验中,对张量核进行了特殊布局(带有标记的红线)。即使不算矩阵布局变化的开销,对于4096×4096及以下的矩阵大小,张量核利用率也小于40%,在6144×6144矩阵中利用率达到最高为72%。

下面来看看FPGA上的情况,上图(Fig.6)的右上角那张图比较了Stratix10 NX上的NPU性能与具有int8张量核的T4 GPU的性能。为了公平地比较,文章禁用了NPU两个输入矩阵其中一个的矩阵布局变换,只保留了对另一个输入以及输出矩阵的布局变换(因为NPU以标准格式使用和生成这些矩阵)。

虽然NPU是为矩阵向量运算而设计的,但在GEMM工作负载上仍然实现了与T4相似的性能,其矩阵大小从512到3072不等(最大的矩阵可以fit进片上BRAM)。 

一起看看顶级FPGA和GPU的PK结果。下图(Fig.7)将文章在Stratix10 NX上增强型NPU的性能与T4和V100的最佳性能进行比较。对于比较小的batch-3和batch-6情况,FPGA性能总是显著高于两个GPU。FPGA在batch-6(其设计为:双核batch-3)中表现最好,平均性能分别是T4和V100的24.2x和11.7x。

与batch-6相比,FPGA在batch-3上的性能较低,因为两个核中的一个完全空闲。仍然比T4和V100分别平均快了22.3x和9.3x。在batch size高于6时,如果batch size不能被6整除,则NPU可能不能被充分利用。例如,在batch size为8、32和256的情况下,NPU最多可以达到其batch-6性能的67%、89%和99%,而batch size为12、36和258(上图中的虚线所示)可以达到100%的效率。在32输入的中等batch size情况下,NX仍然比T4具有更好的性能,并且与V100性能相当。

即使在比较大的batch size情况下,NX的性能也比T4高58%,只比Die size更大(大将近一倍)的V100低30%。这些结果表明,人工智能优化的FPGA在低batch实时推理中不仅可以实现比GPU好一个数量级的性能,而且可以在放宽延迟约束下的高batch推理中和GPU匹敌。上图(Fig.7)中的右下角图了不同batch size情况下NX相对于CPU的平均加速情况。

上图(Fig.7)中的右上角图显示了与不同batch大小下的两个GPU相比,NX的平均利用率。NX在batch-6中的平均利用率为37.1%,而T4和V100分别仅为1.5%和3%。GPU张量核并非直接互连,只能接收来自本地核内寄存器文件的输入。每个GPU张量核都必须发送partial result到全局内存中,并与其张量核同步,以结合这些partial result。然后GPU从全局内存中读取组合好的矢量来执行进一步的操作,如激活函数(activation functions)。

较高的batch size可以摊销这种同步延迟,但即使在batch-256情况下,T4和V100的利用率分别只有13.3%和17.8%。 另一方面,FPGA在架构上也更具优势,其在张量块之间有专用的用来做减法的互连, FPGA的可编程布线资源还允许将MVU tile和矢量单元级引擎级联起来进行直接通信,减少了像GPU中那样必须通过内存通信的情况。

综上可以看到,FPGA依靠架构优势和超高的资源利用率,在AI性能PK上对GPU形成了强劲挑战。下一篇,我们再来一起看看从系统角度,FPGA和GPU的对比情况以及功耗方面的分析。

审核编辑 :李倩

 

猜您喜欢


保险丝作为保护电路的重要元件,起到了防止过载和短路的关键作用。威廉玛奇(William March)作为知名的保险丝制造品牌,高品质和多样化的产品规格赢得了认可...
2022-03-23 14:13:30
隔热手套是专为保护手部而设计的安全装备,应用于厨房、焊接、烘焙等高温环境。通常采用耐高温材料,如硅胶、芳纶或棉质内衬,能够有效抵御热量、火焰和蒸汽,确保在处理热...
2008-01-22 00:00:00
熔断器作为重要的电路保护元件,其选型和品牌选择显得尤为关键。华册熔断器因其优良的性能和可靠的品质,受到众多用户的青睐。那么,在众多品牌中,华册熔断器怎样选型品牌...
2020-09-02 04:46:30
当今数字化高速发展的时代,USB接口已成为我们生活中不可或缺的一部分。USB4-TYPEA_14.63X14MM_TM作为USB4的一种新型接口,凭借其卓越的性...
2025-03-09 07:25:44
你是否想过,我们日常使用的手机、笔记本电脑等电子设备,是如何将插座里的交流电转换为可供使用的直流电的呢?这背后,就隐藏着一种默默无闻却又很重要的电力变换技术——...
2024-04-06 00:00:00
分流器电阻是非常重要的配件,特别是在电流传感与校准应用中。作为行业内的佼佼者,台康(TAICON)很好的产品质量和的型号选择,成为了众多工程师和技术人员的首选。...
2020-02-18 01:29:30
VISHAY(威世)很好的品质和的应用领域,成为了众多工程师信赖的选择。本文将深入探索这一知名品牌——VISHAY精密电阻的国籍之谜,带您了解起源、发展历程以及...
2023-07-10 23:18:08
插座面板盒是现代电气安装中不可少的基础组件,主要用于容纳和保护电气插座及其连接线。插座面板盒由高品质的绝缘材料制成,能够有效防止电流泄漏和短路现象的发生,确保用...
2008-12-16 00:00:00
压敏电阻(Varistor)是一种具有非线性电阻特性的电子元件,应用于电路保护、过压保护和电压调节等领域。其主要功能是在电压超过某一特定值时迅速降低电阻,从而保...
2025-03-16 11:35:06
贴片电阻上的「472」标记代表其阻值为4.7千欧姆。三位数字标记的贴片电阻,遵循以下规则:前两位数字代表有效数字,最后一位数字代表10的幂次方。 因此,「472...
2024-11-26 11:30:03