FPGA时序分析-建立时间和保持时间裕量都是inf怎么解决呢?

时间:2025-11-02  作者:Diven  阅读:0

今天有个小伙伴遇到一个问题,就是在vivado里面综合后看到的建立时间和保持时间裕量都是inf,我们来看看怎么解决这个问题。

FPGA时序分析-建立时间和保持时间裕量都是inf怎么解决呢?

实验一:

 

Module testMem( input clk, input [9:0] addr, input we, input [7:0] wdata, output reg [7:0] rdata ); reg [7:0] mem [1023:0]; reg [7:0] data; reg [7:0] data1; reg [7:0] data2; reg [7:0] data3; always@(posedge clk)begin if(we)begin mem[addr] <= wdata; end end     always@(posedge clk)begin            rdata <= mem[addr];    end endModule

 

时序约束如下:

 

create_clock -period 5.000 -name sys_clk [get_ports clk]set_property -dICt {PACKAGE_PIN U18 IOSTANDARD LVCMOS33} [get_ports clk]

 

代码非常简单,大家一看就可以知道,这段代码会被映射到一个Bram上。综合后的资源报告也印证了我们的想法:

但是看时序分析:

是不是感觉很奇怪明明我们约束时钟了,为什么时序分析后是inf呢,我们来看一下综合后的框图就明白了。

可以看到在上图里面,clk只和bram的时钟管脚相连,这种情况下怎么做时序分析嘛,一般我们在片内做的时序分析都是一个寄存器到另一个寄存器的。
时序分析一共四种模型,可以参考下面四张图,分别是Input to Flip-flop Path,Flip-flop to Output Path,Flip-flop to Flip-flop Path,Input to Output Path图片来源于StatIC Timing Analysis for Nanometer Designs也就是静态时序分析圣经,这本必读哦。

实验二:

那怎么改变,vivado计算出来是inf呢,首先给输入输出加上

 

(*DONT_TOUCH="yes"*)

 

这个约束看看,代码就变成了下面这个样子

 

module testMem(    input clk, (*DONT_TOUCH="yes"*)input [9:0] addr, (*DONT_TOUCH="yes"*)input we, (*DONT_TOUCH="yes"*)input [7:0] wdata, (*DONT_TOUCH="yes"*)output reg [7:0] rdata );     reg [7:0] mem [1023:0]; always@(posedge clk)begin if(we)begin mem[addr] <= wdata; end end always@(posedge clk)begin rdata <= mem[addr];    end endmodule

 

这次呢时序分析对了,我们来看一下综合后的结果,可以看到不再是孤零零的一个bram的ip了,这个就是典型的Flip-flop to Flip-flop Path的时序分析了。

但是注意到没有,实现的资源从bram变成lut和FF了,这个是因为在xilinx的器件里面,bram必须至少要有一级寄存器,那你可能又要问了,我们不是在代码里面rdata有一级寄存器吗,为啥没有被综合成bram呢,这个是因为加了dont touch的约束之后,vivado就不会再去优化这个寄存器,这样这个寄存器就不能被优化到bram里面了,这样自然就不会使用bram资源来实现上面的代码了。

实验三:

我们可以通过手动再加一级寄存器的方案,来让使用bram资源,代码如下:

 

module testMem(    input clk,a (*DONT_TOUCH="yes"*)input [9:0] addr, (*DONT_TOUCH="yes"*)input we, (*DONT_TOUCH="yes"*)input [7:0] wdata, (*DONT_TOUCH="yes"*)output reg [7:0] rdata ); reg [7:0] mem [1023:0];    reg [7:0] data; always@(posedge clk)begin if(we)begin mem[addr] <= wdata; end end     always@(posedge clk)begin data <= mem[addr]; end always@(posedge clk)begin rdata <= data ;    end endmodule

 

可以看到时序分析,资源分析和我们预期是一致的。

综合后的结果也和我们预期一致,可以和实验一做对比,这次在bram后面多了一级寄存器哦。

实验四:

那么我们在上面的代码里面继续去掉dont touch约束看看会发生什么。

 

module testMem( input clk,a input [9:0] addr, input we,    input [7:0] wdata, output reg [7:0] rdata ); reg [7:0] mem [1023:0]; reg [7:0] data; always@(posedge clk)begin if(we)begin mem[addr] <= wdata; end end always@(posedge clk)begin data <= mem[addr]; end always@(posedge clk)begin rdata <= data ; end endmodule

 

可以看到又变成了inf,再来看一下综合后的框图,和实验一一样,你可能会问,我们不是加了两级寄存器了吗,怎么bram的输出一个都没有呢,这是因为这两级寄存器都被bram给吸收了呢。
小提示,这样两级寄存器的方式比一级的时序会好很多哦,当然如果如果寄存器不少纯打拍的话,是不会被吸收进去的。

实验五:

既然打两拍不行,那就多打几拍咯。

代码变成下面的样子:

 

module testMem( input clk, input [9:0] addr, input we, input [7:0] wdata,    output reg [7:0] rdata ); reg [7:0] mem [1023:0]; reg [7:0] data; reg [7:0] data1; reg [7:0] data2; reg [7:0] data3; always@(posedge clk)begin if(we)begin mem[addr] <= wdata; end end     always@(posedge clk)begin data <= mem[addr];    end always@(posedge clk)begin data1 <= data; data2 <= data1; data3 <= data2; rdata <= data3; end endmodule

 

可以看到一切和我们的预期一致。

总之做FPGA一定要知道自己写的代码会被映射到什么资源上去哦。


审核编辑:刘清

猜您喜欢

CU50温度传感器工作原理 CU50温度传感器是一种电阻温度传感器,其工作原理基于材料电阻随温度的变化。 CU50温度传感器采用铜和镍等金属材料制成,其...
2023-08-21 08:09:00

精密电阻作为电子元件中的重要组成部分,应用于各种电子设备中。Walsin(华新)作为全球领先的电子元器件制造商,其精密电阻产品因质量稳定、性能优异而受到市场青睐...
2018-07-04 15:36:30

配置电路FPGA配置方式灵活多样,根据芯片是否能够自己主动加载配置数据分为主模式、从模式以及JTAG模式。典型的主模式都是加载片外非易失( 断电不丢数据) 性...
2022-09-22 09:13:00



据麦姆斯咨询报道,医疗领域MEMS和传感器开发领先厂商美国Millar,近期宣布收购Sentron的战略意图。Sentron是一家著名的完全集成的压力和pH传感...
2023-11-20 09:11:00

TO252封装是一种广泛应用于电子元器件中的表面贴装封装类型,因其优良的散热性能和小巧的体积而受到工程师的青睐。随着电子技术的不断发展,TO252封装在各类电子...
2025-02-24 10:32:11


高频二极管是电子电路中不可少的元件,应用于无线通讯、信号处理等领域。由于市场上二极管种类繁多,型号复杂,如何选择合适的高频二极管成为了许多工程师和电子爱好者面临...
2025-04-07 20:30:35

金相砂纸是专门用于金属表面处理的磨料工具,具有多种优势。磨料颗粒均匀,能够有效去除金属表面的氧化层和杂质,确保金属表面光滑平整。金相砂纸的耐用性极强,能够在高强...
2009-10-06 00:00:00