基于FPGA器件实现数字下变频器电路的设计

时间:2025-06-13  作者:Diven  阅读:0

数字化中频(DIF)频谱分析仪在高中频实现数字化处理,具有分析带宽大、RBW小、测量时长短,可对复杂信号实施时—频分析的功能,因而得到越来越的应用。但由于现有的数字信号处理器(DSP)处理速度有限,往往难以对高速率A/D采样得到的数字信号直接进行实时处理。为了解决这一矛盾,需要采用数字下变频(DDC)技术,将采样得到的高速率信号变成低速率基带信号,以便进一步的分析处理。用现场可编程阵列(FPGA)来设计数字下变频器有许多好处:FPGA在硬件上具有很强的稳定性和极高的运算速度,在软件上具有可编程的特点,可以根据不同的系统要求,采用不同的结构来完成相应的功能,具有很强的灵活性,便于进行系统功能扩展和性能升级。

基于FPGA器件实现数字下变频器电路的设计

数字下变频

数字下变频的主要目的是经过数字混频将A/D转换输出的中频信号搬移至基带,然后通过抽取,滤波完成信道提取的任务。数字下变频器由本地振荡器(NCO)、混频器、抽取滤波器和低通滤波器组成,如图1所示。

图1 数字下变频原理图

A/D变换后的信号分成两个信号,一个信号乘以正弦序列(同相分量),下变频至零中心频率上,通过抽取滤波器、整形低通FIR滤波形成与原信号相位相同的信号;另一路信号乘以经过90度相移的正弦序列(正交分量),同样是下变频至零中心频率上,再通过相同的抽取滤波器、整形低通FIR滤波器,形成与原信号正交的信号。这样,DDC输出的低速率、零中频的正交的两路信号送往DSP等数字信号处理器进行后续的数字处理。

DDC的FPGA

以某中频数字化接收机为例来说明如何实现基于FPGA的数字下变频器。输入信号为中频26MHz,带宽500KHz的调频信号,该信号经过A/D变换之后送到DDC(A/D采样精度为8位,采样率20MHz),要求DDC将其变换为数字正交基带信号,并实现10倍抽取,即输出给基带处理器的数据速率为2MSPS,最后再经过16阶FIR滤波器进行信号整形。

NCO的实现

NCO采用直接数字合成(DDS)的方法实现,目前常见的技术有查表法和CORDIC计算法,本设计采用查表法来实现NCO,其原理图如图2所示。

图2 NCO原理图

32位累加器由一个32位的加法器和一个32位寄存器组成,在时钟的作用下,加法器通过寄存器将输出数据送入到加法器的一个输入端,与32位的频率控制字进行相加运算,得到一个有规律的相位累加结果。由于正弦值在一个周期内取有限个采样值,大于2pi部分的正弦值只是这有限数值的重复出现,当累加结果大于FFFFFFFFH是,不需产生进位,而是重新从00000000H开始累加。为了减小ROM的容量,根据相位截断技术,取累加器输出的高10位作为查表地址,但是这种实现方式,在降低成本的也引入了杂散分量,影响了NCO的纯度。正弦值ROM中存储的是预先计算好的正弦波幅值,利用正弦波的对称特性,只需存储四分周期的幅值,再通过相应的转换即可恢复出整个周期的幅值。由于余弦波和正弦波相位差为pi/2,可以很容易的实现余弦信号。其关键部分的VHDL代码如下:

process

begin

wait until clk=’1’;

if add(8)=’0’ then

address《=add(7 downto 0);

else

address《=”11111111”-add(7 downto 0);

end if;

if add(9)=’0’ then

qou(7)《=’0’;

qou(6 downto 0)《=q;

else

qou(7)《=’1’;

qou(6 downto 0)《= ”1111111”-q;

end if;

end process;

抽取滤波器的实现

CIC积分梳状滤波器是实现高速抽取非常有效的单元。CIC滤波器的系统函数为:

式中D即为CIC滤波器梳状部分的延迟,滤波器系数都为1。从上式可以看出CIC滤波器的实现非常简单,只有加减运算,没有乘法运算,FPGA实现时可达到很高的处理速率。但是,单级CIC滤波器的旁瓣电平只比主瓣低13.46dB,这就意味着阻带衰减很差,一般是难以满足实用要求的。为了降低旁瓣电平,可以采取多级CIC滤波器级联的办法解决。在CIC滤波器的实现过程中,需要给内部寄存器提供足够的位宽,其计算公式为:

其中N为级数,M为延迟,R为抽取倍数。

本设计中,CIC滤波器需要完成10倍的抽取,采用4级级联来实现,由于输入、输出数据均为8bit,故内部寄存器所需的最大位宽为,旁瓣容限可达到4×13.46=43.44dB。

CIC滤波器实现的关键是抽取器的分频设计,其VHDL代码如下:

signal count : integer range 0 to 9;

signal clk2 : std_logic;

if (count=9) then --抽取器分频实现

clk2《=’1’;

else

clk2《=’0’;

end if;

comb : process --抽取器代码

begin

wait until clk2=’1’;

i3d1《=c0;

…………

c4《=c3/2-c3d1;

end process comb;

低通滤波器的实现:

数字下变频器的最后一个模块是低通FIR滤波器,主要用来对信号进行整形滤波,消除信号中存在的噪声。本设计采用并行结构的FIR滤波器,由2个8阶滤波器级联实现16阶的滤波器,由预相加模块、查找表模块和移位相加模块组成,结构图如图3、4所示。

这种结构的滤波器结构简单、易于实现,很容易扩展成高阶滤波器。首先通过MATLAB中的FirDesignTool工具得到滤波器的系数图表(表1)。利用线性FIR滤波器抽头系数的对称性,通过加法器将对称的系数进行预相加,从而降低硬件规模。根据分布式算法原理,通过将抽头系数的所有可能组合固化在ROM中,利用查找表来代替乘法器。利用预相加模块产生的地址来查找ROM表,并将相应的数值进行移位相加,从而得出正确的结果。

表1 16阶FIR滤波器系数

DDC系统的实现

利用上述的各个模块,可得到DDC系统的实现结构图如图6所示。

整个系统在Cyclone系列芯片EP1C6Q240C8上实现,其FPGA综合结果图7所示。

时序测试图(图8)中,黄色为系统时钟波形,绿色为NCO产生的正弦波时序波形,蓝色为抽取滤波器输出的时序波形,粉红色为FIR滤波器输出时序波形。从示波器显示的时序图可以看出抽取滤波器输出波形的延时最大,大约为14ns左右,这和软件仿真的结果比较吻合,仿真中抽取滤波器输出的延时为16.47ns。故抽取滤波器是制约系统时钟速率提高的关键因素。

结语

本文介绍了应用于数字化中频频谱分析仪的数字下变频电路,整个电路基于FPGA实现,结构简单,易于编程实现。

猜您喜欢

可控硅输出光耦是应用于电力电子和自动化控制领域的元件,其主要优势体现在以下几个方面。可控硅输出光耦具有高耐压特性,能够承受较高的电压,适合在高压环境中工作。这使...
2024-06-25 00:00:00

防静电围裙是专为防止静电对电子产品和敏感设备造成损害而设计的工作服。其规格尺寸通常根据不同的使用需求和人体工学设计进行调整。防静电围裙的标准尺寸包括S、M、L、...
2012-09-05 00:00:00

现代电子设备中,开关电源是很重要的配件,能够将电能高效地转换为设备所需的各种电压和电流。而常用开关电源芯片,则是实现这一能量转换的核心部件,其性能直接影响着电源...
2023-12-29 00:00:00

贴片电阻的阻值通常用数字和字母标注在表面。三位数标注时,前两位数字表示有效数字,第三位数字表示10的幂次方。例如,标注为「102」的电阻,阻值为10×10² Ω...
2025-04-14 15:03:54

LED灯具凭借其节能环保和使用寿命长的优势,已经走进了千家万户。然而,LED灯在使用过程中难免会出现故障,而LED光源驱动器作为LED灯的核心部件,其好坏直接影...
2024-10-24 00:00:00

光敏电阻,又称光电导体,是对光线敏感的电阻器,应用于光线探测、自动照明、光控开关等领域。光敏电阻的工作原理是基于光照强度的变化,导致其电阻值发生变化。尽管光敏电...
2025-04-16 01:30:35

据英国《金融时报》(Financial Times)发布报道,称从知情人士获悉:美国国防部已决定将禾赛科技(Hesai)从中国军工企业黑名单中除名,因为五角大...
2024-08-14 19:17:00

1 引言嵌入式系统是以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统,是计算机技术、通信...
2020-08-05 17:38:00

你是否好奇,小小的手机充电器是如何将220V的交流电转换成手机所需的5V直流电的?这其中,开关电源芯片是很重要的配件。就像一位能量魔术师,高效地调节着电流的电压...
2024-11-21 00:00:00

蜂鸣器和电子讯响器是两种常见的声音发出设备,但在工作原理和应用场景上有显著区别。蜂鸣器通常是通过振动膜片来产生声音,主要用于发出简单的警报声或提示音,应用于家用...
2022-04-22 00:00:00