首页 > 技术 > 内容

基于复杂可编程逻辑器件实现数据采集系统的软硬件设计

时间:2026-01-23  作者:Diven  阅读:0

1 引言

以往的数据采集系统多数采用单片机DSP微处理器产生A/D转换芯片所需要的控制时序,以及通道转换所需要的时序逻辑信号,这样会占用CPU较多的时间。本文介绍基于CPLD的高速高精度数据采集系统设计方法,所需控制时序及地址译码等电路均由CPLD产生,并将转换结果放于双端口RAM中,CPU随时从双端口RAM中读取转换结果,大大提高系统的数据采集速度。

在某些控制系统中,其数据采集除了要满足最基本的精度和速度要求外,还必须在动态范围、分辨率等指标上满足要求。普通的高位数A/D在转换精度和速度上难以兼顾,例如目前市场上∑-Δ型串行输出24位A/D,其转换时间都在ms级,不能满足高速数据采集的要求,为了在较低成本的前提下仍能获得较高的动态范围和采集速度,设计中采用了基于CPLD控制的带浮点放大器的两级并行A/D转换方案,系统在小信号输入时放大较高的倍数,以增加A/D转换的有效位数,在大信号时放大较低的倍数,截断小量保证信号的主要部分,既保证了数据采集系统的动态测量范围,同时又兼顾到系统的采集精度和速度。

2 带浮点放大器的CPLD数据采集系统硬件设计

2.1 系统硬件整体框图

带浮点放大器的CPLD高速高精度数据采集系统硬件电路如图1所示,由模拟信号输入调理电路、程控放大器PGA204、A/D 转换器ADS7800和ADS7805、双端口存储器IDT7134、数据采集时序控制器EPM7128等构成。

所需控制时序及地址译码等电路均由可编程逻辑器件EPM7128产生,CPLD通过编程用多种计数器、逻辑电路、时钟电路等组成的纯硬件子系统实现A/D的控制、转换、读取时序,不仅节省了PCB面积,减少了整个系统结构的复杂程度,提高了系统的可靠性。

图1 带浮点放大器的CPLD多通道数据采集系统硬件电路图

浮点放大器的结构如图1的上方虚线框内所示,主要由12位的预转换A/D转换器ADS7800、编码电路和程控增益放大器PGA204组成。输入信号接入预转换电路,根据ADS7800的输出结果,由编码电路判断输入信号的范围,设定程控放大器的放大倍数(1、10、100、1000倍四个档);程控放大电路主要是根据编码电路确定下来的增益码实现对输入信号的放大,在不超出16位A/D输入范围的前提下,尽量将信号放大足够的倍数,以扩大数据采集系统的动态范围,随后将放大适当倍数的模拟信号再送入16位A/D转换器。浮动的放大倍数称为“阶码”,16位A/D转换结果称为“尾码”,数据采集系统的输出结果由“阶码”+“尾码”组成,这类似于计算机中浮点数的表达方式,“浮点”放大器也因此得名。

系统采用了具有高速采集保持功能的转换器ADS7800,支持双极性模拟量输入,输入范围±10V、±5V可选,内部具有时钟和电压参考,采样速率可高达333kHz,从而保证了信号分档的速度。美国BB公司出品的16位A/D芯片ADS7805具有如下突出特点:(1)自带采样/保持器,方便对交流信号的采样;(2)最高采样频率可达100kHz;(3)转换结果全16位并行输出,具有三态缓冲功能,与16位数据总线接口方便;(4)提供±10V的输入范围,与工业标准兼容;(5)单+5V电源供电,可方便地与其芯片接口。

2.2 ADS7800和ADS7805的时序

图2 A/D转换器的工作时序图

2.3 系统工作流程

数据采集子系统的主要控制流程如下:输入信号接入ADS7800进行预转换;编码电路将ADS7800的12位转换结果,取其绝对值,并根据输入信号落在那个区间,确定程控放大器的增益,取得“阶码”;锁定增益数值,经适当放大后的信号送入A/D转换器ADS7805取得16位的有效“尾码”;将“阶码”和“尾码”送入双端口RAM保存;切换地址重复上述过程。

从上述过程可以看出时序逻辑控制电路必须保证两片A/D转换器的转换与结果存储、读取协调可靠有序地运行,时序控制电路应当自动生成A/D控制信号以及共享RAM的写入、地址等信号。

3 数据采集系统软件设计

运用VHDL硬件设计语言,采用状态机方法对CPLD进行编程实现流水控制。下面以对ADS7800和PGA204组成的浮点放大器的控制为例,CPLD简要程序如下:

ARCHITECTURE AD_CPLD OF adnew_test IS

PROCESS(clockin)

begin

if Reset=‘1’ then

RC12《=‘1’;

state《=s0;

elsif clockin‘event and clockin=’1‘ then

busy_12n1《=busy_12n2; --判断ADS7800的BUSY端是否上升沿

busy_12n2《=Busy12; --读取ADS7800的BUSY端状态

busy_12pd《=not busy_12n1 and busy_12n2;

case state is

when s0=》

RC12《=’1‘;

state《=s1;

when s1=》 --启动ADS7800

RC12《=’0‘;

state《=s2;

when s2=》

RC12《=’1‘;

state《=s3;

when s3=》

if busy_12pd=’1‘ then --ADS7800转换结束

Data_fw《=Data12_in; --读取ADS7800结果

state《=s4;

end if;

when s4=》 --转换结果取绝对值

if Data_fw》2047 then --》7FFH

Temp_fw《=Data_fw AND “011111111111”;

else

Temp_fw《=not Data_fw AND “011111111111”;

end if;

state《=s5;

when s5=》 --PGA204的增益控制

if Temp_fw《3 then

PGA_G《=“11”; --放大1000倍

else

if Temp_fw《20 then

PGA_G《=“10”; --放大100倍

else

if Temp_fw《200 then

PGA_G《=“01”; --放大10倍

else

PGA_G《=“00”; --放大1倍

end if;

end if;

end if;

state《=s0;

when others=》 --初始化状态;

state《=s0;

end case;

end if;

end PROCESS;

END AD_CPLD;

4 结束语

本文作者创新点:所设计的带浮点放大器的CPLD数据采集系统,其浮点放大器在小信号输入时放大较高的倍数,在大信号时放大较低的倍数,保证了数据采集系统的动态测量范围;双端口RAM作为A/D转换与CPU之间的桥梁,为高速数据吞吐提供了有力的硬件支持;CPLD具有大量I/O管脚和较强的带载能力,内部资源丰富、处理速度快, 可实现灵活多变的控制流程;结合以上几方面的优势,系统总体上实现了对输入模拟信号的高速、高精度数据采集。该系统已应用于本人参与设计的MSINS/GPS微小型组合导航系统中,已产生经济效益20余万元;该数据采集系统也可以应用于需要宽输入范围、高精度、高采样速度和数据处理速度的智能仪器设计中,经济效益将会相当可观。

猜您喜欢


切割板是厨房中不可少的工具,根据材料和用途的不同,可以分为多种类型。木质切割板天然的纹理和良好的刀具保护性受到许多家庭厨师的喜爱。尽管需要定期保养,但美观和耐用...
2009-05-05 00:00:00
监控电源是保障监控系统稳定运行的关键部件,正确的接线是确保电源安全有效工作的首要步骤。本文将为您详细介绍监控电源AC(交流电)和DC(直流电)的接线方法,帮助您...
2024-03-24 00:00:00
二极管是重要的半导体元件,应用于电子电路中。了解二极管的正负极符号,对于正确使用和理解电子设备非常重要。本文将详细介绍二极管的正负极符号及其在电路中的应用,帮助...
2025-03-30 18:01:06
SSM(日本)高质量和可靠性的插件电阻产品而闻名。随着电子设备的普及,各种品牌如雨后春笋般涌现,为市场提供了丰富的选择。本文将为您介绍SSM(日本)插件电阻的主...
2018-07-01 15:33:30
1 概述HDL(VHSIC Hardware Description Language)是一种硬件描述语言,主要用于描述数字电路和系统的结构、行为和功能。它是...
2024-03-04 11:41:00
贴片电阻,作为电子电路中不可或缺的基础元件,你可能每天都在接触到它,但你知道它的英文缩写是什么吗?其实,贴片电阻的英文全称是Chip Resistor,因此,它...
2024-11-26 11:29:36
贴片电阻来料检验报告是保证电子产品质量的关键环节。如何快速看懂报告,判断电阻是否合格?这份简要指南将为您提供帮助。关注基本信息。报告应包含供应商名称、物料型号、...
2024-11-29 10:25:51
现代产品设计和制造中,配件的作用日益凸显。特别是像“Accessories_24.8X18.7MM_TM”这样的配件,不仅能提高产品的功能性,还能增强用户体验。...
2025-04-21 17:31:08
光敏电阻作为重要的光电元件,应用于各种智能设备和自动控制系统中。众多品牌中,丽景电子光敏电阻因其优良的品质和稳定的性能,逐渐受到市场的关注和青睐。本文将全面介绍...
2016-09-03 04:55:27
二极管是重要的电子元件,应用于整流、信号调制等电路中。了解二极管的反向截止电压对于设计和调试电路非常重要。反向截止电压是指在反向偏置条件下,二极管能够承受的最大...
2025-03-30 01:01:07